UNIVERSIDADE ESTADUAL DE CAMPINAS – UNICAMP FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO - FEEC

EE 882 – LABORATÓRIO DE COMUNICAÇÃO I

EXPERIÊNCIA 1

ESPECTRO DE FREQUÊNCIA

Parte Teórica

1. INTRODUÇÃO

Os sinais elétricos, tais como tensão e corrente, são grandezas que variam no tempo. A descrição destes sinais, por outro lado, pode ser feita tanto no domínio do tempo quanto no da freqüência. A análise espectral, baseada em séries e transformadas de Fourier, é uma ferramenta muito importante na engenharia de comunicações. A série de Fourier lida com sinais periódicos enquanto que a transformada de Fourier é usada para sinais não periódicos. Neste experimento serão analisados sinais periódicos.

2. SÉRIE DE FOURIER

Seja v(t) um sinal periódico com período T_0 . Sua representação em série de Fourier é dada por:

$$v(t) = C_0 + \sum_{n=1}^{\infty} 2 |C_n| \cos \left(2\pi n f_0 t + \Phi_n\right) \qquad f_0 = \frac{1}{T_0}$$
(1)

onde C_n e Φ_n são dados por:

$$C_{n} = \frac{1}{T_{0}} \int_{-T_{0}/2}^{T_{0}/2} v(t) \ e^{-j2\pi n f_{0}t} dt \qquad \text{para } n = 0, 1, 2, \dots$$

$$\Phi_{n} = \angle C_{n} = -\arctan\left(\frac{\int_{-T_{0}/2}^{T_{0}/2} v(t) \operatorname{sen}(2\pi n f_{0}t) dt}{\int_{-T_{0}/2}^{T_{0}/2} v(t) \operatorname{cos}(2\pi n f_{0}t) dt}\right) \qquad (3)$$

Pode-se também representar o sinal periódico v(t) na forma equivalente em série de Fourier:

$$v(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(2\pi n f_0 t) + \sum_{n=1}^{\infty} b_n \sin(2\pi n f_0 t)$$
(4)

onde

$$a_0 = \frac{1}{T_0} \int_{-T_0/2}^{T_0/2} v(t) dt$$
(5)

$$a_n = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} v(t) \cos\left(2\pi n f_0 t\right) dt$$
(6)

$$b_n = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} v(t) \, \operatorname{sen} \left(2\pi n \, f_0 \, t\right) dt \tag{7}$$

Assim, um sinal periódico no tempo é completamente caracterizado pela amplitude e fase de cada uma de suas harmônicas, isto é, de suas freqüências nf_0 (n = 1, 2, ...). A Figura 1 ilustra uma onda do tipo dente de serra no domínio do tempo e no da frequência.

c) Espectro unilateral de fase

Figura 1: Onda dente de serra no domínio do tempo e da freqüência.

A Figura 2 mostra outras formas de onda e suas representações em termos de série de Fourier.

Figura 2: Sinais periódicos com suas respectivas representações em série de Fourier

Finalmente, se uma onda periódica satisfaz a condição

$$x(t) = -x\left(t + \frac{T_0}{2}\right) \tag{8}$$

então essa onda não possui as harmônicas pares. Note que este é o caso da onda quadrada e da onda triangular.

Parte Prática

Utilize o esquema da Figura 3 para a caracterização de sinais periódicos no domínio do tempo e no da freqüência

Figura 3: Caracterizando sinais periódicos no domínio do tempo e da freqüência

As formas de onda no tempo devem ser impressas utilizando na impressora acoplada ao osciloscópio digital. Para a impressão do espectro (domínio de freqüência) o aluno deve utilizar um **pen drive** ou outro recurso que achar apropriado.

Ajuste primeiramente a forma de onda desejada ligando um cabo coaxial de 50 Ω da saída do gerador de funções até o osciloscópio digital. Para casar a impedância de saída do gerador de funções (50 Ω) com a de entrada do osciloscópio (1 M Ω) utilize um conector *feed-through* de 50 Ω na entrada do osciloscópio. Não é necessário a utilização do *feed-through* entre o o gerador e o analisador de espectro FS300, pois sua impedância de entrada já é de 50 Ω .

1. Onda Senoidal

Ajuste, pelo osciloscópio, uma onda senoidal, produzida pelo gerador Agilent 33220A, em torno de 0,1 Volt de pico (V_p) e freqüência f_0 igual a 100 kHz. Imprima a forma de onda observada no osciloscópio com informação de amplitude e freqüência. Conecte agora o cabo coaxial ao analisador de espectro. Ajuste adequadamente os parâmetros do analisador para permitir uma boa visualização do espectro em freqüência do sinal medido. Para o ajuste siga o seguinte roteiro:

- No menu FREQ/SPAN pressione a opção CENTER e digite o valor de f_0 (100 kHz).
- Pressione o botão SPAN e escolha um valor apropriado de varredura de frequência.
- Ajuste a amplitude AMPT para um RANGE linear, de 0 a 100%. Pressione UNIT escolha a opção mV. No REF LEVEL, digite um valor (teto) adequado da escala vertical para uma boa observação do espectro (próximo de 75% para melhor precisão).
- No menu MKR acione o marcador na primeira harmônica em PEAK.
- Verifique ainda no menu BW/SWEEP se a *resolution bandwidth* (RBW) é adequada, bem como o tempo de varredura (*sweep time*).
- Utilize também a escala vertical em dB (RANGE), com a unidade em dBm (UNIT), quando for preciso.

Produza cinco visões do espectro utilizando as seguintes escalas verticais:

- Linear com UNIT em [mV]
- Logarítmica, UNIT em [dBm], RANGE = 40 dB
- Logarítmica, UNIT em [dBm], RANGE = 80 dB
- Logarítmica, UNIT em [dB μ V], RANGE = 40 dB
- Linear com UNIT em [mW], RANGE = linear e REF LEVEL = 200μ W

Antes de imprimir, coloque o marcador sobre a raia desejada. Compare e comente os cinco espectros obtidos em relação à forma de onda no domínio do tempo. Justifique os valores declarados pelo marcador, fazendo uma comparação com os valores esperados teoricamente.

2. Onda Quadrada

Selecione no gerador do funções uma onda quadrada de $0,1V_p$ e freqüência igual a 100 kHz e veja os resultados nos osciloscópios antes de injetá-lo no analisador FS300. Imprima. Faça a medição apenas na escala linear (UNIT em mV). Utilize SPAN = 1 MHz e CENTER 500 kHz. Meça a magnitude das harmônicas até 1 MHz com auxílio do "Cursor". Faça antes os ajustes para uma melhor visualização espectral e imprima os resultados no tempo e na freqüência. Faça uma tabela comparando os valores práticos com os teóricos esperados. Comente.

3. Onda Triangular

Selecione no gerador de funções uma onda triangular de $0,1 V_P$ e freqüência igual a 100 kHz. Meça a magnitude das harmônicas até 1 MHz. Compare os resultados medidos com a teoria e comente.

4. Pulsos

Selecione no gerador de funções uma onda tipo pulso de 0,1 V_P e freqüência igual a 100 kHz. Faça o fator de ocupação (*duty cycle*) igual a 10%. Avalie os tempos τ e T_0 . Meça a magnitude das harmônicas até 1 MHz. Compare os resultados medidos com a teoria e comente. Altere adequadamente a CENTER FREQ e o SPAN, com o intuito de observar a função **sinc (ou sampling).** Interprete o resultado e comente.

5. Distorção no cruzamento do zero

Monte o circuito dado abaixo:

Figura 4: Circuito com distorção cross-over

Se os conectores BNC/Fêmea indicados na Figura 4 não estiverem disponíveis, utilize dois cabos BNC/Jacaré de 50 Ω na entrada (E) e na saída (S) do circuito. Note que o resistor de 50 Ω indicado na figura é equivalente ao cabo coaxial com o conector *feed-through* (no caso do osciloscópio), ou a resistência de entrada do analisador de espectro (FS300).

Gere uma tensão senoidal de 1 MHz e aplique ao circuito. Anote a forma de onda na saída, bem como o espectro obtido, para três valores de amplitudes (**declaradas no gerador**) de valores iguais a:

- 0,25 [V_P]
- 0,5 [V_P]
- 1,0 [V_P]

Obtenha, para os três casos, a distorção harmônica total (DHT %) em porcentagem, em relação à senoidal "pura", utilizando a relação:

$$DHT(\%) = \frac{\sqrt{A_2^2 + A_3^2 + \dots + A_n^2}}{A_1} \times 100 \ (\%)$$

onde:

 A_1 = amplitude da fundamental (1 MHz) $A_2, A_3, ..., A_n$ = amplitudes das harmônicas

Avalie a distorção até 10 MHz, pelo menos. Compare os três casos investigados. Comente e conclua.