IE550 — Processmamento Digital de Sinais — 2* Lista de Exercicios

Obs.: Exercicios selecionados do Oppenheim e Schafer, Discrete-Time Signal Processing.

5.25. Consider a causal linear time-invartant system with system function

5.32.

5.40

(Tt

H(z) = T
where a is real.
(a) Write the difference equation that relates the input and the output of this system.
(b) For what range of values of a is this system stable?
(¢) For a =1, plot the pole-zero diagram and shade the region of convergence.
(d) Find the impulse response h[n] for this system,
(e) Show that this system is an allpass system. i.e.. that the magnitude of the frequency

response is a constant. Also, specify the value of the constant.

Consider the linear time-invariant system whose system function is
H(z) = (1 — 0.9¢/%6%z71)(1 — 0.9¢ 10552~ 1)(1 — 1.25¢/%3z " ')(1 — 1.25¢7 03727 1),

(a) Find all causal system functions that result in the same frequency-response magnitude
as H(z) and for which the impulse responses are real-valued and of the same length as
the impulse response associated with H(z). (There are four different such system
functions.) Explicitly identify which one is minimum phase and which, to within a
time shift, is maximum phase.

(b) Find the impulse responses for the system functions in part (a).

(¢) For cach of the sequences in part (b). compute and plot the quantity

EDi) = Y ()

for 0 < n < 5. Indicate explicitly which plot corresponds to the minimum-phase
system.

Consider the class of discrete-time filters whose frequency response has the form
H(e*) = | H(e')[e ™4,

where |H(e’)| is a real and nonnegative function of w and « is a real constant. As
discussed in Section 5.7.1, this class of filters is referred to as linear phase filters.

Also consider the class of discrete-time filters whose frequency response has the
form

H(e_rco) e A{Eim}e-hm"_jﬁ,

where A(e’®) is a real function of w, o is a real constant, and f 1s a real constant. As
discussed in Section 5.7.2, filters in this class are referred to as generalized linear phase
filters.

For each of the filters in Fig. P5.40, determine whether it is a generalized linear
phase filter. If it is, then find A(e’®), o, and f and indicate if it is also a linear phase filter.
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5.45. Consider the class of FIR filters that have h[n] real, h[n] =0 for n < 0 and n > M, and

one of the following symmetry properties:
Symmetric: h[n] = h[M — n]
Antisymmetric: h[n] = —h[M — n]

All filters in this class have generalized linear phase, i.e., have frequency response of
the form

H(e'®) = A(ei™)e =+ 38,

where A(e’®) is a real function of w, « is a real constant, and f is a real constant.
For the following table, show that A(e’®) has the indicated form, and find the values
of x and §.

Type Symmetry Filter Length (M + 1) Form of A(e/®) o i
M2
| Symmetric Odd Y a[n]cos wn
m=(}
{(M+1)/2
I Symmetric Even 2. blnJcos win — 1/2)
=1
M2
11 Antisymmetric Odd Y, e[nlsin wn
n=1
(M +1)/2

v Antisymmetric Even Y. dnlsin ax(n — 1/2)

A=l




Here are several helpful suggestions.

* For type I filters, first show that H(e’®) can be written in the form

o M-22 (M - 22 ;
H(e®)= 3 h[nJe™ "+ % h[M — nJe ioM=nl 4 hrpq/2]e=doMi2),
n=0 =0

* The analysis for type III filters is very similar to that for type I, with the exception of a
sign change and removal of one of the above terms.

* For type Il filters, first write H(e’®) in the form

(M—1y2 (M—1)/2

HE)y= Y hnle ™ + Y h[M — nJe-iatt-n
n=0 n=0

and then pull out a common factor of e ™2 from both sums.
* The analysis for type IV filters is very similar to that for type 11 filters.

6.5. For the system function

142271 4272

B 1 -3z 4477

draw the flow graphs of all possible realizations for this system as cascades of first-order
systems.

6.7. Consider a causal linear time-invariant system whose system function is

L4g—t
(1-1z""+ 2791 + 3270

H(z) =

(a) Draw the signal flow graphs for implementations of the system in each of the
following forms:
(i) Direct form I
(ii) Direct form II
(iii) Cascade form using first- and second-order direct form 11 sections
(iv) Parallel form using first- and second-order direct form Il sections
(v) Transposed direct form II
(b) Write the difference equations for the flow graph of part (v) in (a) and show that this
system has the correct system function.



6.12. A linear time-invariant system with system function

Hilz} < D.Z!fl-f-z'
S = e

Z B
is to be implemented using a flow graph of the form shown in Fig. P6.12.

(a) Fill in all the coefficients in the diagram of Fig. P6.12. Is your solution unique?

(b) Define appropriate node variables in Fig. P6.12 and write the set of difference
equations that is represented by the flow graph.

Figure P6.12

6.15. The impulse response of a linear time-invariant system is

a”, 0<n<7,
Aln] = {{l otherwise.

(a) Draw the flow graph of a direct form FIR implementation of the system.
(b) Show that the corresponding system function can be expressed as

atz 8

H(z) =

| (VB

T_az_'l1 fz|>|ﬂ|

(c) Draw the flow graph of another system having the same system function and

consisting of a cascade of an FIR system with an TIR system (assume |a| < 1).

(d) Which implementation of the system requires
(i) the most storage (delay elements)?

(ii) the most arithmetic (multiplications and additions per output sample)?



6.19. Figure P6.19 shows the direct form and lattice form flow graphs for the FIR system

discussed in Example 6.7. We wish to verify that the two flow graphs have the same
system function.

z
R, W — >
x[n]
-0.9 0.64 -0.57

(a) Use Eqgs. (6.54) to find the coefficients of the system function polynomial A(z) for the
system of Fig. P6.19(b) from the k-parameters and compare A(z) to the system
function of the system in Fig. P6.19(a).

(b) Compute the impulse responses of the two systems in Fig. P6.19 by simply tracing an

impulse input through all paths in the flow graphs and summing the impulses that
arrive at the output with the same delay.

Obs. Eqgs (6.54) are Levinson-Durbin relations.

7.1. Consider a continuous-time system with impulse response k.(t) and system function

s+a

B =i m

(a) Use impulse invariance to determine H,(z) for a discrete-time system such that
h,[n] = h(nT).
(b) Use step invariance to determine H,(z) for a discrete-time system such that s,[n] =
5(nT), where
4

s;5[n] = i h,[k] and 5,(1) =I h(t)dz.

k=—=To =m

(c) Determine the step response s,[n] of system 1 and the impulse response h,[n] of

system 2. Is it true that h,[n] = h,[n] = h(nT)? Is it true that s,[n] = s,[n] =
5.(nT)?



74.

7.8.

A discrete-time lowpass filter is to be designed by applying the impulse invariance method
to a continuous-time Butterworth filter having magnitude-squared function

1
2 L

The specifications for the discrete-time system are those of Example 7.3, ie.,

0.89125 < |H(e™)| <1, 0<|w| <02r,
|H(e™)| < 0.17783, 037 < |w| < =

Assume as in Example 7.3 that aliasing will not be a problem; i.e., design the continuous-
time Butterworth filter to meet passband and stopband specifications as determined by
the desired discrete-time filter.

(a) Sketch the tolerance bounds on the magnitude of the frequency response | H (jQ)| of
the continuous-time Butterworth filter such that after applying the impulse invariance
method (i.e., h[n] = T;h(nT))), the resulting discrete-time filter will satisfy the given
design specifications. Do not assume that T; = 1 as in Example 7.3.

(b) Determine the integer order N and the quantity T,Q, such that the continuous-time
Butterworth filter exactly meets the specifications determined in part (a) at the
passband edge.

(¢) Note that if T, = 1, your answer in part (b) should give the values of N and Q,
obtained in Example 7.3. Use this observation to determine the system function H (s)
for T; # 1 and to argue that the system function H(z) that results from impulse
invariance design with T, # 1 is the same as the result for T, = 1 given by Eq. (7.19).

The system function of a discrete-time system is

2 1
H(z) = T e S e T

(a) Assume that this discrete-time filter was designed by the impulse invariance method
with T, = 2;i.e., h[n] = 2h(2n), where h(t) is real. Find the system function H (s) ofa
continuous-time filter that could have been the basis for the design. Is your answer
unique? If not, find another system function H (s).

(b) Assume that H(z) was obtained by the bilinear transform method with T, = 2. Find
the system function H (s) that could have been the basis for the design. Is your
answer unique? If not, find another H (s).



7.17. Consider a continuous-time lowpass filter H (s) with passband and stopband specifica-

tions
1-6, <|H(Q)I<1+46, |9=<Q,,

|H(jQ)| < d,, Q <|Q <

This filter is transformed to a lowpass discrete-time filter H,(z) by the transformation

H1(2) = Hr(ﬁ}

s=(l=z7"Hi(1+z~ 1)

and the same continuous-time filter is transformed to a highpass discrete-time filter by the
transformation

H,(z) = H.s)

(a) Determine a relationship between the passband cutoff frequency Q, of the contin-
uous-time lowpass filter and the passband cutoff frequency @, of the discrete-time
lowpass filter.

(b) Determine a relationship between the passband cutoff frequency Q, of the contin-
uous-time lowpass filter and the passband cutoff frequency w p2 Of thc discrete-time
highpass filter.

(c) Determine a relationship beween the passband cutoff frequency w,, of the discrete-
time lowpass filter and the passband cutoff frequency p2 Of the discrete-time
highpass filter.

(d) The network in Fig. P7.17 depicts an implementation of the discrete-time lowpass
filter with system function H,(z). The coefficients 4, B, C, and D are real. How
should these coefficients be modified to obtain a network that implements the
discrete-time highpass filter with system function H,(z)?

Figure P7.17



7.20. A discrete-time highpass filter can be obtained from a continuous-time lowpass filter by
the following transformation:

H(z) = H(s) i
s=[{1+z-H)1-z-1]

(a) Show that the above transformation maps the jQ-axis of the s-plane onto the unit
circle of the z-plane.

(b) Show that if H(s) is a rational function with all its poles inside the left-half s-plane,

then H(z) will be a rational function with all its poles inside the unit circle of the
z-plane.

(¢) Suppose a desired highpass discrete-time filter has specifications
| H(e)| < 0.01, || < m/3,
095 < |H(e)| < 1.05, 72<|w|<m.

Determine the specifications on the continuous-time lowpass filter so that the desired
highpass discrete-time filter results from the above transformation.

7.27. Consider the following ideal frequency response for a multiband filter:

F B b 0 < |w| <0.3m,
H(e’) =10, 0.3n < |w| < 0.6m,

0.5e” /M2 06n < |w| < .

The impulse response h,[n] is multiplied by a Kaiser window with M = 48 and f§ = 3.68,

resulting in a linear phase FIR system with impulse response h[n].

(a) What is the delay of the filter?

(b) Determine the ideal impulse response h,[n]. _ _

(¢) Determine the set of approximation error specifications that is satisfied by ‘the FIR
filter; i.e., determine the parameters 9, 8,, 83, B, C, ®,;, @, ®,;, and w; in

B—4, <|H(®)|<B+d, 0O0so<ao,,
\H(E™)| < 65, e B g
C-6,<|H(E)|<C+d;, @ <0<



8.1

In Section 8.2.2, we stated the property that
if %,[n]=%[n—m],
then X, [k]= W "X[k].

where X[k] and X,[k] are the DFS coefficients of £[n] and %,[n], respectively. In this

problem, we consider the proof of this property.

(a) Using Eq. (8.11) together with an appropriate substitution of variables, show that
X,[k] can be expressed as

N=1-m
X []=wi ¥ =x[rIwy. (P8.4-1)

re—m

(b) The summation in Eq. (P8.4-1) can be rewritten as

N=1-m -1 N m

_:_
Y xAwk= ¥ Wi+ Y x[rIwy. (P8.4-2)
r=0

r=—m r=—m
Using the fact that £[r] and W are both periodic, show that

-1 N-=1
Y X[wy = é‘. [rwy. (P8.4-3)

(c) From your results in parts (a) and (b), show that

X.[k]= Wﬂ"Nili[r] Wk = WX [k].

r=0

Compute the DFT of each of the following finite-length sequences considered to be of
length N (where N is even).

(a) x[n] = d[n]
(b) x[n] =d6[n—n;], O=<ny<N-1

) B 1, neven, 0=n<N-—-1
R 0, nodd, 0<n<N-—1

, O0<n<N]R2-1
@ x["]z{u, N2<n<N-—1

a’, <n=<N-1
(8) Hn) = {U, otherwise



8.24. Consider the finite-length sequence x[n] in Fig. P8.24. The 4-point DFT of x[n] is
denoted X[k]. Plot the sequence y[n] whose DFT is

Y[k] = W3X[K].

1 x[n]
3/4
1/2
] 1/4
P —§ T 5 —8—8 99— —
B 0t T 8 s & 7 B n Figure P8.24

8.32. Suppose we have two 4-point sequences x[n] and h[n] as follows:

o cos(n—;), A2

h[n] = 2%, n=10123.

(a) Calculate the 4-point DFT X[k].

(b) Calculate the 4-point DFT H[k].

(c) Calculate y[n] = x[n]@h[n] by doing the circular convolution directly.

(d) Calculate y[n] of part (c) by multiplying the DFTs of x[n] and h[n] and performing
an inverse DFT,

8.48. We want to implement the linear convolution of a 10,000-point sequence with an FIR
impulse response that is 100 points long. The convolution is to be implemented by using
DFTs and inverse DFTs of length 256.

(a) If the overlap-add method is used, what is the minimum number of 256-point DFTs
and the minimum number of 256-point inverse DFTs needed to implement the
convolution for the entire 10,000-point sequence? Justify your answer.

(b) If the overlap-save method is used, what is the minimum number of 256-point DFTs
and the minimum number of 256-point inverse DFTs needed to implement the
convolution for the entire 10,000-point sequence? Justify your answer.

(c) We will see in Chapter 9 that when N is a power of 2, an N-point DFT or inverse DFT
requires (N/2)log, N complex multiplications and N log, N complex additions. For
the same filter and impulse response length considered in parts (a) and (b), compare
the number of arithmetic operations (multiplications and additions) required in the
overlap-add method, the overlap-save method, and direct convolution.



99. A modified FFT algorithm called the split-radix FFT or SRFFT was proposed by
Duhamel and Hollman (1984) and Duhamel (1986). The flow graph for the split-radix
algorithm is similar to the radix-2 flow graph, but it requires fewer real multiplications. In
this problem we illustrate the principles of the SRFFT for computing the DFT X[k] of a
sequence x[n] of length N.

(a) Show that the even-indexed terms of X[k] can be expressed as the N/2-point DFT
(N/2)— 1
X[2k]= Y (x[n] + x[n+ N2]W3
n=0
fork=0,1,...,(N/2)— 1.
(b) Show that the odd-indexed terms of the DFT X[k] can be expressed as the N/4-point

DFTs
X[4k + 1]
(N/4)— 1
= Y {(x[n] — x[n+ N/2]) — j(x[n + N/4] — x[n + 3N/A])} Wi W+
n=0
fork=0,1,...,(N/4)— 1, and
X4k + 3]
(N/4)-1

= Y {(x[n] — x[n+ N/2]) —j(x[n + N/4] — x[n + 3N/4])} W W

fork=0,1,...,(N/4)— 1.

(c) The flow graph in Fig. P9.9 represents this decomposition of the DFT for a 16-point
transform. Redraw this flow graph labeling each branch with the appropriate
multiplier coefficient.

(d) Determine the number of real multiplications required to implement the 16-point
transform when the SRFFT principle is applied to compute the other DFTs in Fig.
P9.9. Compare this number to the number of real multiplications required to
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implement a 16-point radix-2 decimation-in-frequency algorithm. In both cases
assume that multiplications by WY are not done.

9.14. In computing the DFT it is necessary to multiply a complex number by another complex
number whose magnitude is unity, i.c., (X + jY)e”. Clearly, such a complex multiplica-
tion changes only the angle of the complex number, leaving the magnitude unchanged.
For this reason, multiplications by a complex number e/ are sometimes called rotations.
In DFT or FFT algorithms many different angles @ may be needed. However, it may be
undesirable to store a table of all required values of sin # and cos 8, and computing these
functions by a power series requires many multiplications and additions. With the
CORDIC algorithm given by Volder (1959), the product (X + j¥)e’ can be evaluated
efficiently by a combination of additions, binary shifts, and table look-up from a small
table.



(a) Define 0, = arctan(2™"). Show that any angle 0 < # < n/2 can be represented as

M-1 :
8= Z miﬁl,‘+£_—‘0+£,
i=0D

where o, = £ 1 and the error ¢ is bounded by
le| < arctan(2~¥),

(b) The angles #; may be computed in advance and stored in a small table of length
M. State an algorithm for obtaining the sequence {«;} for i =0, 1,..., M — 1 such
that o, = + 1. Use your algorithm to determine the sequence {2} for representing the
angle f = 1007n/512 when M = 11.

(¢) Using the result of part (a), show that the recursion

X'O:X!
Yn=y‘!
XI-ZX[ l—ai_lf_lz_Hl, 1.:1,2,...,M1

Y;:};—I_!_‘II'—IX!'—Lz-J-‘-l! f‘=1,2,.-..M,:
will produce the complex number
(Xa +i%) = (X +jY)Gye,

where 0 = ¥ M ! 2,0, and G, is real, positive, and does not depend on 0. That is, the
original complex number is rotated in the complex plane by an angle f and magnified
by the constant G,,.

(d) Determine the magnification constant G,, as a function of M.,

9.17. The decimation-in-time FFT algorithm was developed in Section 9.3 for radix 2, i.e.,
N = 2. A similar approach leads to a radix-3 algorithm when N = 3",
(a) Draw a flow graph for a 9-point decimation-in-time FFT algorithm using a 3 x 3
decomposition of the DFT.

(b) For N = 3%, how many complex multiplications by powers of W, are needed to
compute the DFT of an N-point complex sequence using a radix-3 decimation-in-
time FFT algorithm?

(¢) For N = 3", is it possible to use in-place computation for the radix-3 decimation-in-
time algorithm?



9.35. The input and output of a linear time-invariant system satisfy a difference equation of the
form

N M
y[n] = kgla,‘y[n - k] + lEﬂb,,;x[i': —k].

Assume that an FFT program is available for computing the DFT of any finite-length
sequence of length N = 2", Describe a procedure that utilizes the available FFT program
to compute

H(e27/512k) fork =10 1;...,512

where H(z) is the system function of the system.



