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Abstract

This paper presents two general fading distributions, the Kc-/I distribution and the 77-,u distribution, for which fading models
are proposed. These distributions are fully characterized in terms of measurable physical parameters. The Kc-/I distribution
includes the Rice (Nakagami-n), the Nakagami-mi, the Rayleigh, and the One-Sided Gaussian distributions as special cases.
The q~-,u distribution includes the Hoyt (Nakagami-q), the Nakagami-m, the Rayleigh, and the One-Sided Gaussian
distributions as special cases. Field measurement campaigns were used to validate these distributions. It was observed that
their fit to experimental data outperformed that provided by the widely known fading distributions, such as the Rayleigh, Rice,
and Nakagami-m. In particular, the Kc-/i distribution is better suited for line-of-sight applications, whereas the q7-,U distribution
gives better results for non-line-of-sight applications.

Keywords: Fading channels; Gaussian distribution; Rayleigh distributions; Nakagami-m distribution; Rice distribution; Hoyt
distribution; Nakagami-q distribution; probability

1. Introduction

T he propagation of energy in a mobile radio environment is
characterized by incident waves interacting with surface

irregularities via diffraction, scattering, reflection, and absorption.
The interaction of the wave with the physical structures generates a
continuous distribution of partial waves [11, with these waves
showing amplitudes and phases varying according to the physical
properties of the surface. The propagated signal then reaches the
receiver through multiple paths, and the result is a combined signal
that fades rapidly, characterizing the short-term fading. For sur-
faces assumed to be of the Gaussian-random rough type, universal
statistical laws can be derived in a parameterized form [1t].

A great number of distributions exist that well describe the
statistics of the mobile radio signal. The long-term signal variation
is well characterized by the lognormal distribution, whereas the
short-term signal variation is described by several other distribu-
tions, such as the Rayleigh, Rice (Nakagami-n), Nakagami-m, Hoyt
(Nakagami-q), and Weibull distributions. Among the short-term
distributions, the Nakagami-mi distribution has been given special
attention for its ease of manipulation and wide range of applicabil-
ity [2]. Although, in general, it has been found that the fading sta-
tistics of the mobile radio channel may well be characterized by the
Nakagami-m distribution, situations are easily found for which
other distributions, such as the Rice and Weibull distributions,
yield better results [3, 4]. More importantly, situations are encoun-
tered for which no distributions seem to adequately fit experimen-
tal data, though one or another may yield a moderate fit. Some
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researches [4] even question the use of the Nakagami-m distribu-
tion, because its tail does not seem to yield a good fit to experi-
mental data, a better fit being found around the mean or median.

The well-known fading distributions have been derived
assuming a homogeneous, diffuse, scattering field, resulting from
randomly distributed point scatterers. With such an assumption, the
central-limit theorem leads to complex Gaussian processes, with
in-phase and quadrature Gaussian-distributed variables having zero
means and equal standard deviations. The assumption of a homo-
geneous diffuise scattering field is certainly an approximation,
because the surfaces are spatially correlated, characterizing a non-
homogeneous environment [1]. In [5] (and also in [6]), a general-
ized form for Rice (Nakagamni-n) distributions and another for Hoyt
(Nakagami-q) distributions were presented. These new forms were
respectively named the Generalized n-distribution and the Gener-
alized q-distribution, and were obtained by considering the sum-
mation of squares of the respective independent variables. These
distributions have the functional structure of that of the non-central
chi-square distribution (in which the degree of freedom is made
continuous) and that of the sum of two gamma distributions (or,
equivalently, the sum of two central chi-square distributions in
which the degree of freedom is made continuous), already pre-
sented before in the literature. (For instance, the first one was
shown in [7, 8] and also in [9]. The second one was given in [10].)
We note, however, that such generalizations were purely connected
with a mathematical problem, and did not concern the physical
phenomena involved.
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The aim of this paper is to propose a general physical fading
model, and to describe, parameterize, and fully characterize the
corresponding signal in terms of measurable physical parameters.
Two fading distributions, the K-/I distribution and the 77-P

distribution, are then presented, which have functional similarities
to those generalized forms already mentioned. Nonetheless, there is
a remarkable difference in the admissible range of one of the
parameters. Whereas in the Generalized n-distribution and in the
Generalized q-distribution, a parameter named n is permitted "to
take any positive number not less than unity at least" [5, 6], the
equivalent parameter in the Kc-/I distribution and in the 7-,u distri-

bution (a parameter named pu) may assume any positive value. The

rc-p distribution includes the Rice (Nakagami-n) and the

Nakagami-m distributions as special cases. The 'i-P distribution

includes the Hoyt (Nakagami-q) and the Nakagami-m distributions
as special cases. Therefore, in both fading distributions, the One-
Sided Gaussian and the Rayleigh distributions also constitute spe-
cial cases. In addition to the characterization of the distributions in
terms of measurable physical fading parameters, as well as the
allowance for a more comprehensive range of values of their
parameters, this paper provides several other contributions,
including: (i) attainment of exact and closed-form moment-based
estimators for the parameters; (ii) a proposal for practical proce-
dures to apply the distributions; (iii) the derivation of exact and
closed-form formulas for the distributions at the limiting values of
the parameters; (iv) a portrayal of important attributes of the distri-
butions, envisaged as they are plotted in what here is named "the
fading plane;" and (v) validation of the distributions through field
measurements. It has been observed that the fit of these distribu-
tions to experimental data outperforms that provided by the widely

known fading distributions, such as Rice and Nakagami-m. More-
over, in these measurements, it was always possible to adequately
fit experimental data through either the Kc-/I distribution or the

q,u- distribution. As shall be seen later in this paper, the question

raised in [4] concerning the inadequacy of the tails of some distri-
butions to fit experimental data is notably less critical in these dis-
tributions. This work gathers, develops, enhances, and extends the

results from [ 11, 12, 13]. (Throughout the text, E (.) and V (.) are

used to denote the expectation and variance operators.)

2. The K-4U Distribution

The K-/I distribution is a general fading distribution that can

be used to represent the small-scale variation of the fading signal in
a line-of-sight condition. For a fading signal with envelope, R, and

normalized envelope, P = R/P, with P = E (R2) being the rms

value of R, the Kc-p envelope probability density function, fp (p),

is written as

fp (p)

IC2 eXP(Pic)

where K > 0 is the ratio between the total power of the dominant
components and the total power of the scattered waves, Pa > 0 is
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given y P =E2(R 2) 1+2K
givn b u=V(R 2) (1+K)2 (or, equivalently,

,a = 1 +2K ), and I, (-) is the modified Bessel function of
V (P') (I1+ K)'

the first kind and order v [ 14, Equation 9.6.20]. For a fading signal

with power W = R 2and normalized power fI = W/Fv, where

W = E (W), the K-1u power probability density function, f ()

is given by

CIlK o2 exp [-,U(I +K) C]I .i2p K(1±Kc)w].

K 2 
eXp (pK)

(2)

In particular, we may also write p = E )1 21 (or, equiva-
v(w) (l+K)2

lently, p = 1 1 +2 K ). The Kc-/I envelope probability distribu-

tion function, Fp (p), is obtained in closed form as

(3)

where

Q, (a, b)- a 1 fxexp~ x + a2 I,_,(ax)d (4)

is the generalized Marcum Qfunction [8]. The ]th moment,

E (P ), of P is found in a closed-form formula as

r,(p)[(1±+K),Uf'
1 2

where r(.) is the Gamma function [14, Equation 6.1.1] and

I F, (-;-; -) is the confluent hypergeometric function [ 14, Equation

13.1.2]. Of course, E (Rk1)=pk E(Pk). Figure 1, for a fixed p

(/uI=0.5) and varyingKc, and Figure 2, for a fixed Kc (Kc=l) and

varying uI, show the various shapes of the Kc-/I probability density

function, fp (p). In Figure 1, the case in which Kr = 0 and ,u - 0.5

coincides with that for Nakagami-m with in = 0.5, where m is the
Nakagami-m parameter. In Figure 2, the case in which u = 1 and

Kc = I coincides with that for Rice with k = I, where k is the Rice

parameter.

2.1 Physical Model for the
Kc-/ Distribution

The fading model for the Kc-/ distribution considers a signal

composed of clusters of multipath waves, propagating in a non-
homogeneous environment. Within any one cluster, the phases of
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Figure 1. The Kc-,
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respectively the mean values of the in-phase and quadrature corn-

P=0.5 ponents of the multipath waves of cluster i; and n is the number of
clusters of multipath. Now, we form the process

R7-2 (Xi+pi) 2 + (Yj+qi)2 , so that R2 = En R? In the same

way, we may write W - En I W, where W =-R2 and W =R?. We

proceed to find the probability density function, fw, (w,), of Wi.

This can be carried out by following the standard procedure, so that

fJi (wi) = C2exp~ 2a~d2 J (d~2

where d,? =-l + q,?, and 1, (-) is the modified Bessel function of

2.0 2.5 3.0 the first kind and order zero [14, Equation 9.6.16].

nctio fora fied uThe Laplace transform, L [fwi (wi)] of IWi (w.), is found to
uncton fr afixe ~j be [ 14. Equation 29.3.81 ]

2.0

0.

0.0 0.5 1.0 1.5
p

2.0 2.5 3.0

LL -fwi(WO)] =-1 2 exp - di 2I1+ 2so l+2sa

where s is the complex frequency (the Laplace variable). Knowing
that the Wi., i = 1, 2, ... , n, are independent random variables, the

Laplace transform, L [fw (w)] , of fw (w) is found to be

L fw()]=c xpl I,,
(Iw~ ) (+ 2sa 2)nl l+2s, 2  )

where d 2 =- I" 1d/ . The inverse of this is given by [ 14, Equation

29.3.81]

n-1

fW(W)~ 2 ljxp~
2'\ /- - ".(7or 2 (

The Kc-/ probability density function for a fixed Kc

It can be seen that P2 =E (R 2)= iE (W) =2nT 2 + d 2 , and that

E(R 4) =E(W2) =4nC_4 +4,T2d 2+(2na 2 +d22).
the scattered waves are random and have similar delay times, with
delay-time spreads of different clusters being relatively large. The
clusters of multipath waves are assumed to have scattered waves
with identical powers, but within each cluster a dominant compo-
nent is found, which presents an arbitrary power.

2.2 Derivation of the K-fl Distribution

Given the physical model for the Kc-/ distribution, the enve-

lope, R, can be written in terms of the in-phase and quadrature
components of the fading signal as

R 2 = X i2+n(j+q 2 (6)

where Xi and Yj are mutually independent Gaussian processes

with E(X,)=E(Y})-0, E(X7')=E(1 iC2 pi and qj are

70

Therefore,

V(R)= V(W) =4nC+4 d. We define Kc= ýnr2as the

ratio between the total power of the dominant components and the
total power of the scattered waves. Then,

E 2(R2) 
2 W

V(R 2) v(W) (1 +21c)
(8)

From Equation (8), note that n may be totally expressed in terms of
physical parameters, such as mean-squared value of the power, the
variance of the power, and the ratio of the total power of the domi-
nant components and the total power of the scattered waves of the
fading signal. Note also that whereas these physical parameters are
of a continuous nature, n is of a discrete nature. It is plausible to
presume that if these parameters are to be obtained by field meas-
urements, their ratios, as defined in Equation (8), will certainly
lead to figures that may depart from the exact n. Several reasons
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exist for this. One of them -probably the most meaningful one - is
that although the model proposed here is general, it is in fact an
approximate solution to the so-called random phase problem, as
are all the other well-known fading models approximate solutions
to the random phase problem.

The limitation of the model can be made less stringent by
defining p to be

1 I+ 2K 1 1+2K()
+v(2 ;(±Kf v (Q) (I+ K) 2 '(9

with p being the real extension of n, and

V(p2) =V (R2 )1E 2 (R 2), V (C2) = V (W)/E 2 (W). Non-integer

values of the parameter p may account for a) non-zero correlation

among the clusters of multipath components; b) non-zero correla-
tion between the in-phase and quadrature components within each
cluster; c) the non-Gaussian nature of the in-phase and quadrature
components of each cluster of the fading signal, among other fac-
tors. Non-integer values of clusters have been found in practice,
and are extensively reported in the literature. (See, for instance,
[ 15], and the references therein.) And, of course, scattering occurs
continuously throughout the surface, and not at discrete points [1].
Using the definitions and the considerations as given above, and by
means of a transformation of variables and a series of algebraic
manipulations, the Kc-p power probability density function can be

written from Equation (7) as

T~fw (W) P(1 + )2 (Wj
K72ý exppK W~

ex W I-] 2p, (10)

which, in its normalized version, yields Equation (2).The K-p

envelope probability density function can be written from Equa-
tion (10) as

ifR (r) 2plK2 (r41

which, in its normalized version, yields Equation (1).

2.3 The Kc-/I Distribution and
the Other Fading Distributions

The Kc-p distribution is a general fading distribution that

includes the best-known fading distributions, namely the Rice and
Nakagami-m distributions. Note that both the Rice and Nakagami-
m distributions include the Rayleigh distribution, and, in addition,
the Nakagami-m distribution also includes the One-Sided Gaussian
distribution. Therefore, these distributions can also be obtained
from the ic-p distribution.

IEEE Antennas and Propagation Magazine, Vol. 49, No. 1, February 2007

2.3.1 Rice and Rayleigh

The Rice distribution describes a fading signal with one clus-
ter of multipath waves in which one specular component predomi-
nates over the scattered waves. Therefore, it can be obtained from
the ic-p distribution by setting p -1I in Equation (1) or, equiva-

lently, in Equation (11). In this case, the parameter Kc coincides
with the well-known Rice parameter k. From the Rice distribution,
by setting Kc - k = 0 (therefore, p 1 and Kc --> 0 in the ic-p

distribution), the Rayleigh distribution can be obtained in an exact
manner.

2.3.2 Nakagami-m, Rayleigh, and
One-Sided Gaussian

The Nakagami-m signal can be understood to be composed of
clusters of multipath waves with no dominant components within
any cluster. Therefore, by setting Kc = 0 in the ic-p distribution, it

should be possible to obtain the Nakagami-m distribution. How-
ever, we note that apart from the case p = 1 , which has been

explored in the previous subsection, the introduction of Kc 0 in
the Kc-p distribution leads to indeterminacy (zero divided by zero).

Appendix A shows that in the limit as Kc -* 0, the K-pu distribution

deteriorates into the exact Nakagami-m density function. In this
case, the parameter p coincides with the well-known Nakagami

parameter mn. Now, setting p = m -1I in the Nakagami-m distribu-

tion (therefore, p = I and K -* 0 in the K-pu distribution), the

Rayleigh distribution can be obtained in an exact manner. In the
same way, by setting p = m = 0.5 in the Nakagamni-m distribution

(therefore, p = 0.5 and Kc --* 0 in the ic-p distribution), the One-

Sided Gaussian distribution can be obtained in an exact manner.

2.4 Estimators for the Parameters

Moment-based estimators for the parameters ic and p can

be obtained as follows. Replacing Equation (9) in Equation (5)
for]j = 6, and after algebraic manipulations, K is found to be

K1 = F2[E(P4) _l] _2
V2E 2(p4)-E (p4)-E (P6)

(12)

The parameter p is obtained from Equation (9).

2.5 Application of the Kc-/ Distribution

As implied in its name, the ic-p distribution is based on two

parameters, Kc and p. Therefore, its use requires the estimation of

these parameters. Alternatively, the following procedure may be
carried out in other to use it. From Equation (9), it can be seen that
the two parameters, Kc and p, can be expressed in terms of the

normalized variance of the power of the fading signal, which is
usually defined as mn. In other words,

MP (I +K)
2

1 + 21c
(13)
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For a given m, the parameters K and u are chosen to yield the

best fit. On the other hand, note that for a given in, the parameter
p will lie within the range in and 0, obtained for K = 0 and

K -4 00, respectively. Therefore, for a given m,

0:!•U ý-M. (14)

The parameter p is then chosen within the range of Equation (14).

Given that u has been chosen, then Kc is calculated from Equa-

tion (13) to be

distribution, the parameters of which are estimated accordingly.
The procedure for obtaining these parameters follows that given in
[ 16], where it was shown that the Kr-fl distribution can be used in

order to approximate the distribution of the sum of Rice (and also
Nakagami-m) variates. In [16], it was demonstrated that exact and
approximate curves are almost indistinguishable from each other.
The distribution of the sum of independent non-identically distrib-
uted Kc-fl variates (power or envelope) may also be approximated

by a Kc-fl distribution, although in this case, the resulting curves

are not as accurate as for the independent identically distributed
case.

1+ -i-li
K + l/1 (15)

2.6 The Kc-fl Distribution for a Fixed m

Equation (13) shows that for a given m, an infinite number of
curves of the Kc-fl distribution can be found that present the same

Nakagami-m parameter, conditioned on the fact that the constraints
of Equations (14) and (15) are satisfied. The Nakagami-m curve is
obtained for K --* 0, in which case u = in. The Rice curve is

obtained for u -1I, in which case Kc = k. Given that u > 0 and

Kc> 0, and that a relationship among Kc, ai, and m is found

through Equation (13), for a fixed m , as u -+*0 then Kc -* oo . In

such a case, it can be shown that (see Appendix A)

fpW = 4m I, (4mp) + [I_-2m~r I..I()]g pI (6
fP exp[12m (I+ P 2)] ± 'exp(m) 5 mj (6

where 8(p) is the Dirac delta function. Figures 3 and 4, respec-

tively, depict a sample of the various shapes of the K-fl probability

density function, fp (p), and the probability distribution function,

Fp (p), as functions of the normalized envelope, p, for the same

Nakagami parameter, m = 1.25. The curves for which u --*0, or
equivalently K --> oo, appear indicated by p = 0, and are obtained

by means of Equation (16). In Figure 3, as p decreases, an
impulse tends to occur at the origin. In the limit as pa --*0, an

impulse does occur, the amplitude of which is given by the right-
hand side of Equation (16). Note in Figure 4 that departing from
the condition u =mi , the curves for decreasing p are sequentially

found above that for p m. It can be seen that although the
normalized variance (parameter m ) is kept constant for each fig-
ure, the curves are substantially different from each other. This is
particularly relevant for the distribution function, in which case the
lower tail of the distribution may yield differences of some orders
of magnitude in the probability. This feature renders the KC-f

distribution very flexible, and this flexibility can be used in order
to adjust the curves to practical data.

2.7 Sum of Kc-p Variates

From the definition of the K-fl distribution, it is easy to see

that the sum of M independent identically distributed (l1D) Kc-fl

power variates is also K-fl distributed, with parameters K and

puM. Now, the sum of M independent identically distributed K-fl

envelope variates may be well approximated by another Kc-fl

72

3. The )7-p Distribution

The q-p distribution is a general fading distribution that can

be used to better represent the small-scale variation of the fading
signal in a non-line-of-sight condition. It may appear in two differ-

1.0 1

. g=.25*m=1.25

ilt0.7 5

0.6-* (Nakagami)

t=0.5 +(Rice, k=0.81)

J'=0 .25

0.2-

0.0-
0.0 0.5 1.0 1.5 2.0 2.5 3.0

p

Figure 3. The K-fl probability density function for the same
Nakagami parameter mn (m =-1.25).

10 0

U_

10-30 -20 -10 0
20log(p)

Figure 4. The Kc-fl probability distribution function for the
same Nakagami parameter m (m = 1.25).
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ent formats, for which two corresponding physical models are
encountered. However, in mathematical terms, one format can be

obtained from another by the rlto ma -Wra Ior,

equivalently, 7
7

Formnatl + 1-lormvat , where 0 < qlzormatI < o is the

parameter Y7 in Format 1, and -1 <llWormt < 1 is the parameter q

in Format 2. For convenience, and in order to simplify' the notation,
we shall use q~ in both cases, bearing in mind that they represent

different physical phenomena and their ranges are different. The
notation is further simplified if we define two other parameters,
namely h and H, which are functions of 77. Therefore, these

parameters assume different meanings and values for the two dif-
ferent formats. The convenience of using these two parameters is
to have a unified representation for both formats.

For a fading signal with envelope R and normalized envelope

P = R/iK P = E(R2) being the rms value ofR, the 77-u envelope

probability density function, fp (p), is written as

fp()=4V,,f'p+2h P2p /exp(-.2php')I_ i(2puHp2), (17)

F7(d)H'1 " 2

where hz and H will be defined next for the two different formats;

p > 0 is given by pu I + ([H+( 2] (or equivalently,

2I(12 [i+(Hj)2] F (.) is the Gamma function [ 14, Equa-

tion 6. 1. 1]; and I, (-) is the modified Bessel fuinction of the first

kind and order v [14, Equation 9.6.20]. For a fading signal with

power W =R 2 and normalized power 0 W/~v, where

w- = E (W), the q-pu power probability density function, fo (w),

is given by

fna~ (W) = o2ep-2uc)u,(2,uH'). (8

F (u) H -2 _

In particular, we may also write ua = E2 (W) [1 +( H )] (or
2V(W)[ ~h

equivalently, p =21V +(H)[( 'I]). The q,

probability distribution function, Fp (p) , is written as

Fp(p)=l-YjfHL, v2-hp P

with -1 <a <1land b Ž0. (Some properties of Y~, (a, b) are shown

in Appendix C.) The jth moment, E (Pi), of P is found in a

closed-form formula as

E(Pi F (2,U +j/2)

2F1 [U+j+ 1,'U+ij;p+ I ;H j], (21)

where 2Fl (.,.;.;.) is the Gauss hypergeometric funiction [14,

Equation 15. 1. 1]. Of course,E R)=P (P .

Figure 5, for a fixed u (p=O0. 6 ) and varying 77, and Fig-

ure 6, for a fixed 77 (77 =0.5) and varying u, show the various

shapes of the r7-pu probability density function, fp (p). In both

0.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p

Figure 5. The
(,u 0.6).

2.0

envelope

0.8

(19)

where, for convenience, the following function is defined:

v~b) /_ 22ffa X 2v exp( X2)j _ (aX2)d (20)

a 2F(v)2
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q-pu probability density function for a fixed u

0.0 0.5 1.0 1.5 2.0 2.5 3.0
p

Figure 6. The il-p probability density function for a fixed 77

(q =0.5).
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figures, and in all of the others, the values of 77 are for Format 1. In
Figure 5, the case in which 27 -0 (,u 0.6) coincides with that for
Nakagami-m with m = 0.6, where m is the Nakagami parameter.
Still in Figure 5, the case in which 77 1 (,u -0.6) coincides with

that for Nakagami-m with m =1.2. In Figure 6, the case in which
p =0.5 (q =0.5 ) coincides with that for Hoyt with b =1/ 3, where
b is the Hoyt parameter, or equivalently with that of Nakagami-q

2
with q =0.5. The reader is referred to Appendix B for the
extended forms of these two formats, where they are written in
terms of the parameters ?7 and p .

The '-,u Distribution: Format I

In Format 1, 0 <7q <cco is the scattered-wave power ratio

between the in-phase and quadrature components of each cluster of

multipath. In such a case. h =2 +77j +77 and H q 11 .We
4 4 '

note that within 0 <~ <1 ý, we have H >?:0. On the other hand,

within 0 <77- <•1, we have H:•0. Because

I. (-z) = (-1)v V~() the distribution yields identical values

within these two intervals, i.e., it is symmetrical around 77 =1.

Therefore, as far as the envelope (or power) distribution is con-
cerned, it suffices to consider 77 only within one of the ranges. We

note that in Format 1, H/h =(1 -,7)1(1+)7).

The 77-pu Distribution: Format 2

In Format 2, -1 <77 <1I is the correlation coefficient between
the scattered-wave in-phase and quadrature components of each

cluster of multipath. In such a case, h = 1I and H=12
1 -;7 1-77

We note that within 0•ýý77 < 1, we have H >! 0. On the other hand,
within -1 <77<!ý0, we have H5 •0. Because

I~,( z = 1v I, (),the distribution yields identical values

within these two intervals, i.e. it is symmetrical around 77 =0.

Therefore, as far as the envelope (or power) distribution is con-
cerned, it suffices to consider 77 only within one of the ranges. We

note that in Format 2, H/h - 77.

3.1 Physical Model for the 71-lu Distribution
The fading model for the 77-p distribution Format I consid-

ers a signal composed of clusters of multipath waves propagatin~g
in a non-homogeneous environment. Within any one cluster, the
phases of the scattered waves are random, and they have similar
delay times with the delay-time spreads of different clusters being
relatively large. The in-phase and quadrature components of the
fading signal within each cluster are assumed to be independent
from each other and to have different powers. The fading model for
the i7-pu distribution Format 2 considers a signal composed of clus-

ters of multipath waves propagating in a non-homogeneous envi-
ronment. Within any one cluster, the phases of the scattered waves
are random, and have similar delay times with delay-time spreads
of different clusters being relatively large. The in-phase and quad-

rature components of the fading signal within each cluster are
assumed to have identical powers and to be correlated with each
other.

3.2 Derivation of the 77-,u Distribution

Initially, consider the physical model for the 77-/i distribution
Format 1. The envelope, R, can be written in terms of the in-phase
and quadrature components of the fading signal as

R2
(ý+y2 (22)

where Xi and Yj are mutually independent Gaussian processes

with E(X1 )=E(1§)-0, E(X,?)-o21 E (y..) =0-2,and nis the

number of clusters of multipath. Now, we form the process
2? -X+y2 2o that R 2 

=In R? . In the same way, we may
RI XI I , so

write W = I ,Wi, where W =R 2 and W,=RI We proceed to

find the probability density function, fwi (wi), of Wi. This can be

earnied out by following the standard procedure, so that

where h and H are as already defined for Format 1, r7- =~ 2o2 is

the scattered-wave power ratio between the in-phase and quadra-
ture components of each cluster of multipath, 10 (-) is the modi-

fied Bessel function of the first kind of order zero [14, Equation
9.6.16], and, for convenience, we have defined

p2 =E R2) = E(R?) =w,=E(W)=nE(WY) =n l+7) 2x

(Note that wln is the signal power of one cluster.). Note that

0<)7!<1 defines the region within which o-k • oY whereas

0 < 17 <1 defines the region within which a 2 <o. Th2 alc

transform, L [fwi (wj)] of fwi (wi). is found to be [ 14, Equation

29.3 .60]

V(s +nhlo )- (nH/w)f

Knowing that the Wi, i - 1, 2, ... , n, are independent, the Laplace

transform, L [fw (w)], of fw (w) is found to be

nn
L [fw (w)]- vsf) 2 -(nH /1i)2 j

the inverse of which is given by [14, Equation 29.3.60]

n-I- nl n-1

wfwFw) ~2 h2 (W) 2

(2H)2 2 2

exp, iiw- I n-w1 (23)
(2W) 7
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It can be seen that p2 =E(R2) = iP =E (W) = n(I+,~)U2 and that

E(R4)=E(W2 [2n(l q)n C+7)]oy Therefore,

Var (R2) = V (W) =2n (1+,72) a'4 Thus,

E2R)E2 (W) n (l+,)2  (4

V(R2) V (W) 2 l+72 (4

Note from Equation (24) that n/2 may be totally expressed in

terms of physical parameters, such as the mean-squared value of
the power, the variance of the power, and the power of the in-phase
and quadrature components of the fading signal. Note also that

whereas these physical parameters are of a continuous nature, n/2

is of a discrete nature (an integer multiple of 1/2). It is plausible to

presume that if these parameters are to be obtained by field meas-
urements, their ratios, as defined in Equation (24), will certainly
lead to values that may depart from the exact n/2. Several reasons

exist for this. One of them -probably the most meaningful one - is
that although the model proposed here is general, it is in fact an
approximate solution to the so-called random-phase problem, as
are all the other well-known fading models approximate solutions
to the random-phase problem. The limitation of the model can be
made less stringent by defining u to be

P V(= ) [,,( Hi] = 1vQ [,+(H )2], (25)

with u being the real extension of n12,

V (p2) =V (R2)/E2 (R2), V (Qi))=V(W)/E 2 (W), and h and H

are as defined. Values of p that differ from multiples of 1/2 corre-

spond to non-integer values of clusters, and may account for a)
nonzero correlation among the clusters of multipath components;
b) nonzero correlation between the in-phase and quadrature com-
ponents within each cluster; and/or c) the non-Gaussian nature of
the in-phase and quadrature components of each cluster of the
fading signal, among others. Non-integer values of clusters have
been found in practice, and are extensively reported in the litera-
ture. (See, for instance, [115 ], and the references therein.) Of course,
scattering occurs continuously throughout the surface and not at
discrete points [1]. Using the definitions and the considerations as
above and some algebraic manipulations, the 77-p power probabil-

ity density function can be written from Equation (23) as

2ýTpP,2hI Ij~ x( 2phwj),ýi 2 ~w~
wfw (w) u ýwpi x 2 w)

(26)

which, in its normalized form, yields Equation (18). The i7-pu

envelope probability density function can be written from Equa-
tion (26) as

rPfR~ r-). (j)" 1 ex[ p (r j)2]'ý_ [2j Kr)2]
(27)

which, in its normalized version, yields Equation (17).
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Now, consider the physical model for the q-pu distribution

Format 2. The envelope, R, can be written in terms of the in-phase
and quadrature components of the fading signal as in Equa-
tion (22), where Xi and 1j are mutually correlated Gaussian proc-

esses with E (Xi) =E (Y) =0, E (X2) = E (Y) = a',and nis the

number of clusters of multipath. Defining the correlation coeffi-
cient between the in-phase and quadrature components to be

q = E(X1 1' )/0- 2 and carrying out the standard procedure to find

the probability density function, as required, we arrive at exactly
the same formulations as shown for Format 1, the difference being

that now -1 < q < 1, and, consequently, h and H are defined

accordingly. Alternatively, one may depart from the correlated

variates Xi and Yj as defined previously, and make a rotation of

the axis so as to arrive at independent in-phase and quadrature

variates having variances respectively equal to a (1- 77)c2

and a2 i -1+). Again, following the standard procedure, the

required distribution is found as before.

3.3 The iq-,a Distribution and
the Other Fading Distributions

The q-p distribution is a general fading distribution that

includes the Hoyt (Nakagami-q), the One-Sided Gaussian, the
Rayleigh, and, more generally, the Nakagami-m distributions as
special cases.

3.3.1 Hoyt, Nakagamni-q, One-Sided
Gaussian, and Rayleigh

The Hoyt (or Nakagami-q) distribution can be obtained from
the 77-p distribution in an exact manner by setting p = 0.5. In this

case, the Hoyt (or Nakagami-q) parameter is given by b I- -

1+77

(or q 2= 7 ) in Format 1, or b =- 77 (or q 2 -7) in Format 2.
1+17

From these, the One-Sided Gaussian distribution is obtained for
q ->0 or 77 -4oo in Format 1, or q -* ±1 in Format 2.In the same

way, the Rayleigh distribution is obtained in an exact manner for
p - 0.5 and by setting q -t1in Format 1 or q = 0 in Format 2.

3.3.2 Nakagami-m, Rayleigh, and
One-Sided Gaussian

The Nakagami-m distribution can be obtained in an exact
manner from the 77-pu distribution for p = m and q7 --*0 or

7 --> oo in Format 1 or q ->±1 in Format 2. In the same way, it

can be attained by setting p = m12 and )7 -*1I in Format 1 or

q7 -> 0 in Format 2. These cases are explored in Appendix A.

Through the Nakagami-m distribution, the One-Sided Gaussian is
obtained for m = 0.5, whereas the Rayleigh distributions is
obtained for m - 1.
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3.4 Estimators for the Parameters

Moment-based estimators for the parameters q7 and p can be
obtained as follows. We shall initially introduce these estimators
for Format 1. Replacing Equation (25) in Equation (21) for j = 6,
and after algebraic manipulations, two sets for 77 are found:

-4 3 - 2c± f9 -8c
)71,2 = 73,4 - _ - V3 -2c+±,9N--8

(28)

The parameter p is then chosen within the range of Equation (3 1).
Given that p has been chosen, then 77 is calculated from Equa-
tion (30) as

h Im
(32)

with 3.6 The q-ia Distribution for a Fixed m

E (p6)-3E (04 )+2

2[E (p4)_1]'

As already mentioned. 77 and 77- lead to the same envelope

(power) density. Therefore, one may use either i77 or )77i without

distinction, and either q72 or i77] without distinction. Note, how-
ever, that there is an ambiguity in this estimation, i.e., 77, (or

equivalently, 77~ ) and 772 (or equivalently, 774 ). Therefore, from
Equation (25), two corresponding parameters, p, and P2, are esti-

mated. Now, in order to decide which pair of estimators ( 77i ,ul ) or

(772 , P2 ) is the appropriate pair, another moment of the envelope
must be used, e.g., the first moment. The aim is to compare the
first moment, E (D), of the normalized envelope obtained from

the data with that of E(P) calculated from Equation (21) for each

pair ( 77, , p, and ('72 ,2 2), and to then choose the pair providing

the smallest absolute deviation, JE(D)-E(P) 1. Of course, if D

follows the q77 p distribution, then the smallest deviation is zero.

As for Format 2, by carrying out the same procedure -or, alterna-
tively, by using the appropriate conversion formula, as given pre-
viously -and making the appropriate simplifications, we find

Equation (30) shows that for a given m, an infinite number of
curves of the q-p distribution can be found that present the same
Nakagami parameter, conditioned on the fact that the constraints of
Equations (31) and (32) are satisfied. The Nakagami curve is
obtained for H/h --+ 0, in which case p = m/2, or, equivalently,

for H/h -> ±1, in which case p = m. The Hoyt distribution is
obtained for p 0.5. Figures 7 and 8 respectively depict a sample

0.4

0.0 0.5 1.0 1.5
P

2.0 2.5 3.0

771,2 =- 13 3,49 8c _ -1. (29)

Figure 7. The 77-p probability density function for the same
Nakagami parameter m (m = 0.75).

3.5 Application of the 77-,u Distribution

As implied in its name, the q-p distribution is based on two
parameters, q7 and p. Therefore, its use requires the estimation of
these parameters. Alternatively, in order to use it the following
procedure may be carried out. From Equation (25), it can be seen
that the two parameters 77 and p can be expressed in terms of the
normalized variance of the power of the fading signal, which is
usually defined as in. In other words,

(30)

For a given in, the parameters q7 and p are chosen that yield the

best fit. On the other hand, note that because 1I •! H/h <1 for a

given m, the parameter p will lie within the range m12 and m
Therefore, for a given mi,

LL

-30 -20 -10
20log(p)

Figure S. The 77-pu probability distribution
same Nakagami parameter mi (m = 0.75).

0 10

function for the
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m/2•!,p:!ým. (31)

10 0
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of the various shapes of the ?q-u probability density function,

fp (p), and the probability distribution function, Fp (p), as a

function of the normalized envelope, p, for the same Nakagami

parameter, mn = 0.75. It can be seen that although the normalized
variance (parameter mn) is kept constant for each figure, the curves
are substantially different from each other. This is particularly
noticeable for the distribution function, in which case the lower tail
of the distribution may yield differences in the probability of some
orders of magnitude.

3.7 Sum of q-,u Variates

From the definition of the q-, distribution, it is easy to see

that the sum of M independent identically distributed i7-,U power

variates is also 17-,u distributed, but with parameters 17 and 'UM.

Now, the sum of M independent identically distributed 77-P enve-

lope variates may be well approximated by another 17-P distribu-

tion, the parameters of which are estimated accordingly. The pro-
cedure in order to obtain these parameters follows that given in
[17], where it was shown that the 77-u distribution can be used in

order to approximate the distribution of the sum of Hoyt
(Nakagami-q and also Nakagami-in) variates. In [17], it was dem-
onstrated that exact and approximate curves were almost indistin-
guishable from each other. The distribution of the sum of inde-
pendent non-identically-distributed 17-fl variates (power or enve-

lope) may also be approximated by a q-p distribution, although in

this case, the resulting curves are not as accurate as for the inde-
pendent identically distributed case.

5. Validation Through Field Measurements

A series of field trials was conducted in downtown
Campinas, Brazil, and at the Unicamp university campus, in order
to investigate the short-term statistics of the fading signal. Basi-
cally, the reception setup consisted of a vertically polarized omni-
directional antenna, a low-noise amplifier, a spectrum analyzer, a
data-acquisition apparatus, a notebook computer, and a distance
transducer. A forward control channel at 870.9 MHz of an analog
cellular system in downtown Campinas, and a CW signal at
1.8 GHz at the university campus were used. The spectrum ana-
lyzer was set to zero span and centered at the required frequency,
and its video output was used as the input of the data-acquisition
and processing equipment. The local mean was estimated through
the moving-average method, with the average being conveniently
taken over samples symmetrically adjacent to every point, a proce-
dure widely reported in the literature [18]. The practice used in

10'

LL

io-1 4~-
-30

4. The Kc-f Distribution and
The q-,u Distribution

-10
20log(p)

Figure 9. The K-fl distribution and the q-p distribution for
the same Nakagami parameter mn (mn = 1.25).

hin the Fp (p) x p plane using a logarithmic scale (the fading

plane), given a fixed Nakagami parameter, mn, the curves belonging
to the c-fl distribution are all found above the Nakagami-in curve,
whereas those belonging to the 77-p distribution are all encoun-

tered below the Nakagami-m curve. A sample of these is illustrated
in Figures 4 and 8 for the respective distributions. As already men-
tioned, the Nakagami-in curve is included in both distributions.
Generally speaking, the Nakagamni-in distribution can be thought of
as a mean distribution, which divides the fading plane into two: the
upper plane, described by the K-fl distribution, and the lower

plane, described by the iq-p distribution. In Figure 9, such a fea-

ture is illustrated for mn -1.25. This is a very interesting attribute,
which can be used in order to choose the best distribution to fit
experimental data, as explained next. For a given set of data, the
Nakagami parameter mn is calculated, and the experimental data are
plotted in the fading plane. In case these data are found above the
Nakagami-in curve, then the best distribution to fit these data is the

Kc-fl distribution; otherwise, the best distribution is the 77-,u distri-

bution. Note that the versatility provided by the use of two
parameters renders these two distributions suited for applications
in which other distributions fail to yield a good fit, particularly for
low values of the fading envelope. The question raised in [4] con-
cerning the inadequacy of the tails of some distributions to fit
experimental data is notably less critical in these distributions.
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'i.10
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10-4

measured data. m = 0.876
- 1-1t distribution,. =O0.8472.,1ii=0-017
* measured data, m = 2.1034

--- g-t distribution. p = 1.1685,K = 2

-20 -15 -10 -5
2OLog(p)

0 5 10

Figure 10. The Kc-fl distribution and the 17-fl distribution,
adjusted to the data of a propagation measurement experiment
at 1.8 GH-z, conducted in an indoor (line of sight - Kc-fl

distribution) as well as an outdoor (non-line-of-sight) environ-
ment at the University of Campinas.
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Figure 11. Another example of the data fit for the experiment
cited in Figure 10.
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-1111 distribution,
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10-2

1 0'. measured data
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0=.
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-- Nakagami-m distribution.
m =3.75
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* measured data, m =2.1034
-- K-it distribution, p, = 1.1685, K. -2

10 0

-10 -5
20Log(p)

Figure 13. Another example of the data fit for the experiment
cited in Figure 12.

Figure 12. The K-/I distribution and the i7-/I distribution,

adjusted to the data of a propagation measurement experiment
at 500 MHz coaducted in an outdoor environment, as reported
in 121]: line-of-sight (K-/I distribution) and non-line-of-sight

(q-,u distribution ) conditions.

order to adjust the distribution in accordance with the acquired data
was that as described in Sections 2.4, 3.4, and 4. We observed that
due to the versatility of these distributions, it was always possible
to adequately fit experimental data through either the Kc-/I distribu-

tion or the r7-,u distribution [ 19, 20]. Some sample examples of the

adjustment to field data obtained in our experiments are shown in
Figures 10 and 11. Note how these distributions closely follow the
measured data.

Now in order to illustrate the versatility of these distributions,
in this paper we also show their fit to experimental data other than
those obtained by the author. We then turn our attention to [21], in
which a propagation measurement experiment at 500 MHz con-
ducted in an outdoor environment was reported. In Figure 9 of
[21 ], the authors plotted the experimental data and the Rayleigh
curve. It could clearly be seen that the Rayleigh adjustment was
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Figure 14: The K-/I distribution and the q-/I distribution

adjusted to the data of a propagation measurement experiment
at 10 Gllz conducted in an indoor environment, as reported in
[181.

IEEE Antennas and Propagation Magazine, Vol. 49, No. 1, February 2007

rather poor. We then carefully extracted experimental points from
these curves and used the investigated distributions to adjust them,
and this is shown in Figures 12 and 13. Note how the fit attained
with these distributions was indeed excellent.

Finally, we explored [18], in which a propagation measure-
ment experiment at 10 GHz, conducted in an indoor environment,
was reported. In Figure 4 of [ 18], where a logarithmic scale was
used, it could be seen that the fit provided by Rayleigh and Rice
distributions to the experimental data was rather poor. Still in [ 18],
the same set of data was then fitted to the Nakagami-m distribu-
tion, and this is shown in Figure 5 of [18]. The fit was better in this
case, but a linear scale was used, although the linear scale was not
suitable for highlighting the behavior of the tail of the distribution.
In order to adjust the K-/I distribution or the 17-,u distribution to

the data of [ 18], these data were carefully extracted from Figure 4
of [18]. By then using the respective Nakagami parameter, m, for

1 ()-2 [

10-3



each set of data -the same parameter as reported in [18] -the
parameters of the distributions under test were adjusted to yield the
best fit for each fixed m. In all of the cases, the fit given by the
K-fl distribution or the il-p distribution was better than that given

by the Rayleigh, Rice, Nakagami, or Weibull distributions. Fig-
ure 14 shows this for the case in which m - 2.1 (Figure 4b and
Figure 5c of [18]) and for m = 1.4 (Figure 4c and Figure 5a of
[18]).

6. Conclusions

This paper presented two general fading distributions: the
K-fl distribution and the 77-pu distribution. The Kc-fl distribution

includes the Rice (and therefore, the Rayleigh) and the Nakagami-
m (and therefore, the Rayleigh and the One-Sided Gaussian) distri-
butions as special cases. The q-p distribution includes the Hoyt

(or Nakagami-q) (and therefore, the Rayleigh and the One-Sided
Gaussian) and the Nakagami-in (and therefore, the Rayleigh and
the One-Sided Gaussian) distributions as special cases. Note that
the Nakagami-in distribution is included in both distributions, and
it defines a "border" between the two distributions in the fading
plane. Generally speaking, the Nakagami-m distribution can be
thought of as a mean distribution with respect to the Kc-fl distribu-

tion and the q-fl distribution. Because these distributions are more
flexible than the other fading distributions, they can yield better fits
to experimental data. This has been observed in several field-
measurement campaigns, carried out both by the author of this
paper together with his team, as well as by other researchers.
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8. Appendix A:
The Distributions for Limiting Values of

the Parameters

This appendix obtains the expressions of the distributions for
the cases in which the simple substitution of the parameters in the
formulas leads to indeterminacy.

8.1 The Kc-f Distribution for K -> 0

For small arguments of the Bessel function, the relation

I,,-, (z) -(z/2)v 1 /i'(v) holds [ 14, Equation 9.6.7]. Using this in

Equation (1), and after some algebraic manipulation,
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As Kc --* 0, Equation (33) reduces to

f F() ,Uf 2,l)~ _P2
(34)

which is the Nakagami-m density function for the normalized
envelope. In this case, the parameter p1 coincides with the well-

known Nakagami parameter, m.

8.2 The Kc-f Distribution for a Fixed m
and ic-4 ci. (,u ->0)

Given a fixed m, as Kc --+ o then p --+0. Therefore,
Kc+I K-i and p ±1lt ±1. Using these in Equation (1) and knowing

that an impulse appears at the origin (observe the trend depicted in
Figure 3) and that I- 1(z) =1I,(z), then

fp(p) =~ exp(-,flcp')Il(2flKp)+KS3(p), (35)

where K is a normalization constant to be determined. In the same
way, we have that rn/p >> I. Using this in Equation (15), then

Kfl- 2m . With such a result replaced in Equation (35),

fPP x=I~M) exp(_2rnp2).t(4mp)±Ct5(p). (36)

The normalization constant, C, is determined so that Equation (36)

is a probability density function (i.e., iffp (p)dp= 1). Using the

result of [22, Equation 6.618-4], such a constant can be found in an

exact fashion to be C =1I- -ý_r1 0.5 (mn). This result is used in
exp (i)

Equation (36) to yield Equation (16).

8.3 The q-pu Distribution for H -> 0

This corresponds to the case in which q --* 1 in Format 1 or

q -+ 0 in For-mat 2. For small arguments of the Bessel function,

the relation I,, (z) -(z/2)v 1'/r (Y) holds [ 14, Equation 9.6.7].

Using this in Equation (17) and knowing that in this case h =1 ,
and after algebraic manipulations,

fp (W)- 4,r,-,,,2pP 4p-I exp( 2pp 2)r (u) F(p +0.5)/
(37)

Making use of 2 2v
0

.
5 F(v)F(v+0.5)=1/_;F(2v) [14, Equation

6.1.18] in Equation (37), then

f p W = 2 (2 ,u )2 ,u 2(2 ,u) -I exp (-2 upp2)
F (2pu)

(38)

which is the Nakagami-in density function for the normalized
envelope. In this case, the parameter p and the Nakagami parame-

ter mn are related to each other by mn = 2,u.
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8.4 The q,-p Distribution for H -> ±cio

This corresponds to the case in which q7 -+ 0 or 77 -> oo in

Format 1, or q ->±1 in Format 2. Assume that H >0. For large

arguments of the Bessel function, and utilizing the first term of the

expansion in [14, Equation 9.7.11, the relation IW(z) epýz
ý2_,r z

holds. Using this in Equation (17), and after algebraic manipula-
tions,

2 P) (H 1 p2 ,u1 ~exp[ 2p (h _H)p2 ]. (39)
F(p)k. H )

For those specific conditions, h/H =I and h - H = 0.5. Then,

Equation (39) reduces to

(40)
fP(P ( P,u) e~ _,

which is the Nakagamni-mi density function for the normalized
envelope. In this case, the parameter p coincides with the well-

known Nakagami parameter m. For H < 0, we use the property

I., (-z) =(-I)' I, (z) and proceed to obtain the same result.

9. Appendix B: The Extended Forms of the
)7-p Distribution

In this appendix, we write the distribution directly in terms of
its parameters.

9.1 The 77-pu Distribution: Format I

The 77-,u probability density function, fl, (p), is written as

exp FP "r (1 + 77)2+ Uo2 'P(41[ 27

with p I +I 77 The 17-p probability distribution funic-

V(P 2l±7 )

tion, Fp (p), is written as

E(R' 2 ,u~j2 F(2p+ j/2)

(P)(2±+ 77 l+,7 ) u+jl2 Pi/2r-(2p)

F i I . + p l j 1 ; (,_i{ 77jj .

9.2 The y-uDistribution: Format 2

The q-pu probability density function, fp, (p), is written as

f,( )= 4fyIflI
1 

2 P2, exp~ 2 1.i )I r2,7PP2)
q 2 1l-)712 (u -1 kp77

(44)

with p 17 . The 77-fl probability distribution function,V (P) 2

Fp (p) , is written as

Fp (p) =I - Yp 77 , 2ý up]::P (45)

Thejth moment, E (PJ), of P is obtained as

E (P 17 72 ) p2F (2pu+ j12)

Ek) (2p )j 12 vF(2p)

2FI P+ 4+ 1,'U+ j;P+ 1 72 (46)

10. Appendix C: Some Properties
of the Function 11$ (a,b)

In this appendix, Y, (a, b) is written in terms of the incom-

plete gamma function, F (.,.) [ 14, Equation 6.5.3], for the limiting

values of the parameter a.

10.1 1$ (a,b) for a Approaching Zero

Using the same approximations as in Section 8.3, we arrive at

Y,(,b F(2v,b 2)
F(2v) (47)

(42)

Thejth moment E (Pi) of P is obtained as

10.2 Y, (a,b) for a Approaching One

Using the same approximations as in Section 8.4, we arrive at
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Y1,( aabb] (48)
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