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ABSTRACT

In this work, the applicability of blind equalizers to mo-
bile communication systems is investigated. The equalizing
scheme to be used consists of a non-linear IIR predictive
structure composed of a cascade of a magnitude and a phase
equalizer. The aim is to provide a comparison between the
LMS and the RLS techniques implemented in this structure.
Simulation results are first presented considering a station-
ary model of the mobile radio channel. Then, the tracking
capability of both algorithms is analysed in a non-stationary
context of mobile radio channels.

1. INTRODUCTION

Mobile radio channels are known to impose many impair-
ments to digital signal transmission. In particular, very
severe and non-stationary fading may be introduced, giving
rise to Intersymbol Interference (ISI) [1]. From there the
need for equalization techniques, which are usually based
on one of the following approaches:

i. The use of a given set of data to estimate the impulse
response of the channel by an ML-based technique.

ii. Conventional adaptive equalizers which usually work
with some supervised learning algorithm.

In both cases, a training sequence is required; which de-
creases the effective bit rate of the system and, therefore,
the number of possible users. For instance, in the GSM
system, each 148 bits frame contains 26 training bits.

Self learning (or blind) equalization consists in retriev-
ing the input data of an unknown channel using only some
statistical information about these data, without the need
for a training sequence. It is, in general, based on adaptive
techniques or in high order statistics solutions. The typical
real-time constraints of the communication systems lead to
adaptive solutions. In this sense, the majority of the pro-
posed algorithms is derived from the Bussgang technique
and based on a FIR filter structure [2].

Predictive techniques using IIR structures was first pre-
sented by Macchi and Gu [3] and a corresponding adapta-
tion criterion was given in [4]. The present work deals with
the alternative predictive approach presented in [5], where
an LMS algorithm for the structure is also derived. Based
on this structure, the contribution of this paper is to present
a novel RLS algorithm derived for the same structure and to
provide a comparison between the two techniques. Such a
study is carried out for both stationary and non-stationary
models of the mobile radio channel.

The paper is organized as follows: The non-linear struc-
ture for predictive self-learning equalization is presented in
the next section, together with the optimization criterion.
Some aspects concerning the stability and unimodality of
the scheme are briefly discussed. Sectior 3. is devoted to

0-7803-~3944-4/97/$10.00 © 1997 IEEE 357

the adaptive algorithms. The LMS technique proposed in
[5] is recalled and a novel RLS procedure is derived for the
same stcheme. Finally, the performance of the proposed
techniques is investigated through simulations, in the con-
text of mobile communications systems. Comparisons with
a Bussgang algorithms is provided, in order to enlighten
the potential of different approaches in a real world case.
For that, both stationary and non-stationary models are
considered.

2. THE PROPOSED PREDICTIVE
EQUALIZER

Suppose a zero mean independent and identically distibuted
(iid) signal {a(n)} is transmitted through a non-minimum
phase channel with transfer function F(z). Any non-
minimum phase linear system may be decomposed in a cas-
cade of a minimum phase system, an all-pass system and a
constant real gain. Let B(z) be a minimum phase system,
D(z) be an all-pass system and f be a gain such that:

F(z) = f B(2) D(2). 1)

The ideal equalizer is the inverse of the channel transfer
function, with a possible delay §, and its transfer function
E(z) is given by

E(z)=2""F'(z) = g P(s) H(2), (2)

where P(z) = B™(z), H(z) = 27D (2), ¢ = f~* and §
is such that H(z) is stable and causal.

According to eq. 2, the equalizer may be seen as the
cascade of three filters G, P and H, with transfer function
g, P(z) and H(z), respectively.

The filter P is implemented as an IIR prediction error fil-
ter which works as a whitening filter and corrects the mag-
nitude distortions caused by B(z). Therefore, the ensemble
FoP reduces the problem to the equalization of D, which
causes only phase distortion. Since the filter H compen-
?izi.tes for this phase distortion, it must also be an all-pass

ter.

It is shown in [5] that this linear structure does not con-
verge with severe channels and it becomes necessary to in-
troduce a decision feedback structure on the phase equal-
izer. So, the overall proposed structure is that shown in
figure 1. The corresponding adaptive algorithms are pre-
sented in the sequel.

3. ADAPTIVE ALGORITHMS

3.1. LMS Approach

Just for the sake of illustration, the LMS algorithms derived
in [5] and [6] are presented in this section. According to
figure 1, P is an IIR linear prediction error filter, such that
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Figure 1. Nonlinear Blind Equalizer.

its output be an uncorrelated sequence. Such a filter is
globally stable [5] when updated by the following algorithm:

C(n)=C(n—1)+Ap(rn)P"(n — 1), (3)

where C(n) = (c1(n), c2(n),-..,en(n))T is the coefficient
vector of P, P(n —1) = (p(n — 1), p(n —2),...,p(r — N))T
is a vector containing the output data and A > 0 is the
step-size.

The output power of P must also be equalized to that of
the input sequence a(n). This is accomplished by the AGC
G, whose parameter is real and is updated by

Gk = Groi+n [E(la(n]) = Is(m)P] (@)

9 = IGx (5)

with a step-size 7 > 0. The output s(n) of the ACG has
a flat spectrum identical to that of a(n), and it remains
unchanged when applied to the all-pass filter H, which aims
at correcting the phase distortions.

Since the phase equalizer H in figure 1 presents a feed-
back structure, it seems suitable to use an adaptation cri-
terion based on the Decision-Directed (DD) error, whose
unimodality proporties have been discussed in {6]. Hence,

considering the cost function J.(H) = E (ls(n)!z) and an
estimative of its gradient given by:

VI(H) =E(n) = (£'(n), & (n),....e" ()",  (6)
we obtain
g(n) =e(n)" &M g(n— L+ j) —e(n)a*(n—j). (7)
Finally, the adaptive algorithm becomes
H(n+1) = H(n) — kE(n), £>0, (8)
v&;h”e{re H(n) = [h1(n),...,he(N)]T is the coefficient vector
o

This algorithm is completed by the phase recovering pro-
cedure given by:

6(n+1) = 6(n) +v3(e(n)"r()), ¥>0,  (9)

where & denotes the imaginary part.
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3.2. RLS Approach

The RLS algorithm for an IIR predictor has been derived
in [8] and is just recalled here:

#(n) =p(n) +C(n Hy(n — 1)

Up(n) = Rp(n —1)@(n

-1

kp(n) = ('w—p + @H(a)Up(n))

Rp(n) = 3= (Bp(n = 1) = Up(n)kp(n)UZ (n))

C(n +1) = C(n) — Rp(n)®(n)p"(n),
where &(n) = (¢(n), ¢(n — 1),...,¢(n — N + 1) is the esti-
mate of the derivate of the output with respect to the past
N outputs and wp is the forgetting factor of the algorithm.

The RLS algortithm aims at minimizing the sum of the

weighted squared errors. In the case of the phase equalizer,
it was shown that cost functions based on the DD error
yield suitable adaptation criteria. Hence, it seems natural
to define the RLS algorithm as the one that seeks the min-

imum of the sum of the weighted squared DD errors, that
is:

E(n) = Z w""i[e(i, n)]z, (10)

where (¢, n) is the DD error at time ¢ using the parameters
calculated at time n.

The derivation of the algorithm for the phase equalizer
becomes very similar to that of the traditional RLS al-
gorithm if the equations are written in a proper manner.
Then, let us pose:

A = [a(i-1),...,8( - n* (11)
S@) = &%[s(i—L+1),8(6—L+2),...,50)]"

So, the decision-directed error may be written as

e(i,n) = s(i— L)’ + (Hi(n) — jHE (n)) S(i)
— (Ha(n) +jH5(n)) AG) - a(i),  (12)
where the indexes R and & denote, respectively, the real

and imaginary parts of the variable. In a more compact
form, we have:

e(i,n) = HT (n)Y(3) — d(i) = V(@) H(n) — d(i), (13)

where d(z) = &() — (i — L)e’% involves all the terms that
are independent of the equalizer parameters and

_ Hsegng ] o [ S(z) ~ A(4) ]
nm=[ 520 ] = vo=[ i) -
14
The find the minimum of £(n), is obtained by setting
to zero its derivative with respect to H(n). Therefore, we

obtain
R(n)H(n) = b(n), (15)
where

R@r) = Y w"Y@EYT() (16)

bn) = an-‘Re{d*(i)y(i)}. an

Now we are ready to follow the same procedure used in
the derivation of the traditional RLS algorithm. The re-
sulting algorithm is as follows:



e(n) = ’HT(n —=1)Y(n) —d(n)
U(n) = P(n — 1)Y(n) .
k(n) = (wIz + YT(n)U(n))
P(n) =L (P(n—1) = U(n)k(n)U” (n))
H(n) = H(n — 1) = U(n)k(n) | Zigzg ]
To derive an RLS algorithm for the phase recovery, the
derivative of £(n) with respect to 8(n) is equated to zero.

Then, straightforward calculations yield the following algo-
rithm

z(n) = 'wzgn — 1)+ HT(n)A(n) + a(n)

8, =/Lz(n

4. SIMULATION RESULTS

Simulation results concern the transmission of 1000 symbols
using 4-PSK modulation. This sequence was transmitted at
a bit rate of 271 kbits/s through the channel described in [7},
which is supposed stationary for sequences of this length.
This simulation environment is in accordance with the GSM
European Standards for testing of equalizing devices. Fig-
ure 2 shows the location of the zeros of this channel.
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Figure 2. Zero-Pole Plot of the GSM Channel

Figure 3 shows the convergence behavior of the proposed
equalizer using LMS techniques, while figure 4 presents the
results of the RLS approach. In order to compare these re-
sults with some of the most used blind equalizing schemes
we have also considered the Bussgang-type algorithm pro-
posed by Godard, whose convergence behavior is presented
i figure 5.
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Figure 3. Convergence Behavior of the LMS Algo-
rithm - Stationary Environment

In these figures, it is seen that the two algorithms based
on predictive techniques present a similar performance,
which is about 5 times as fast as that of the Godard tech-
nique.

To simulate a non-stationary environment, the software
developped in [9] was used. It simulates the transmission of
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Figure 4. Convergence Behavior of the RLS Algo-
rithm - Stationary Environment
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Figure 5. Convergence Behavior of the Godard Al-
gorithm - Stationary Environment

digital data through a D-AMPS channel. Figure 6 shows its
output power, supposing that the mobile unit was moving
at 4 km/h.

Power
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Figure 6. Power Profile of the Mobile Channel

Ouput

Figures 7 and 8 show the convergence behavior of the
LMS and the RLS techniques, respectively. Once again,
these two techniques present a very similar performance.

Just for the sake of illustration, figures 9 and 10
present the constelation at the output of the equaliz-
ers, using the LMS and the RLS techniques, respec-
tively. Only the open-eye periods have been consid-
ered, which corresponds to the following iterations range:
{[150,11001; [2000, 2300]; [5200, 5600]} for the LMS algo-
rithm and {[60, 1250]; £3500, 4900]; [5200, 5550]} for the RLS
algorithm. Again, their performances are similar, even
thop%h the RLS technique keeps the eye open for a longer
period.
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Figure 7. Convergence Behavior of the LMS Algo-
rithm - Non-Stationary Environment
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Figure 8. Convergence Behavior of the RLS Algo-
rithm - Non-Stationary Environment

5. CONCLUSION

This paper deals with the non-linear IIR self-learning equal-
izer proposed in [5]. A novel RLS algorithm has been intro-
duced for this equalizer and compared with the LMS tech-
nique. Both algorithms provide a better convergence rate
when compared with Bussgang techniques. The tracking
capability of the algorithms is confirmed by simulations un-
der a non-stationary environment, since the open-eye con-
dition is recovered several times during the adaptation pro-
cess. The results concerning the static convergence of the
proposed approach has been carried out in [6], where uni-
modality properties have been derived. Studies concerning
dynamic convergence properties are now in course.
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