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Abstract— In this paper, we use the cubature Kalman filter
(CKF) for joint channel estimation and data detection in multiple-
input multiple-output (MIMO) systems subject to fast frequency-
selective fading. First, based on a model of the channel coefficients
and transmitted symbol dynamic, the problem is formulated in
the state-space form, leading to a nonlinear observation equation.
Then, the CKF is presented and some changes are proposed to
improve the estimation and detection processes in the receiver,
and to overcome modeling errors. Finally, through numerical
simulations, it is shown that the CKF can be used to track channel
variations and detect transmitted symbols with low error rates.

I. INTRODUCTION

The use of multiple transmission and/or reception antennas
has played a central role in the design of modern wireless com-
munication systems [1], [2]. In practice, when using high data
transmission rates in these systems, the transmitted symbols
are subject to inter-symbol interference (ISI). Furthermore, if
there exists a relative movement between the receiver and
the transmitter, the wireless channel through which data is
transmitted will vary in time. Therefore, in order to implement
practical wireless systems that use multiple transmit and/or
receive antennas, it is essential to devise methods to correctly
detect symbols transmitted under such conditions.

Indeed, to mitigate channel effects, the receiver must em-
ploy estimators for channel tracking and equalizers for ISI
compensation. Usually, the estimators and equalizers work
separately, and the correlation between estimated channel and
data symbols introduced by using estimates from detection in
channel estimation process and, conversely, by using channel
estimates to detect the symbols, is ignored. An interesting alter-
native to this usual approach is described in [3], where a joint
semi-blind detection and channel estimation is proposed using
Bayesian estimation theory [4]. However, although a Bayesian
filter provides an optimal analytical solution to non-linear
filtering problems, its solution involves a great computational
cost. Therefore, approximations to the Bayesian paradigm
are necessary in order to develop practical implementations.
In [5] the cubature Kalman filter (CKF) was proposed as
a Gaussian approximation for the Bayesian filter, providing
accurate estimates and being able to solve a wide range of
nonlinear problems.
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Within this context, in this paper we aim to efficiently
perform a joint channel estimation and data detection in
multiple-input multiple-output (MIMO) systems subject to fast
frequency-selective fading. In order to achieve this goal, we
first model the channel estimation and data detection problem
in the state-space form, obtaining a single augmented state-
equation and a non-linear observation equation. Since in our
state-space formulation the process equation is linear, it is
possible to develop a hybrid receiver using the well-known
Kalman filter approach to perform the prediction updates,
and using the CKF to perform the measurement updates.
Therefore, using the proposed state-space model, we derive a
filter based on the CKF that takes into account properties of the
system in order to obtain a filtering algorithm with maximum
computational efficiency. Also, in order to compensate for
a possible modeling mismatch of the channel dynamics, we
introduce an aging factor, following the Recursive Fading
Memory Filtering theory [6], that progressively reduces the
importance of past channel estimates in the filtering algorithm.
Finally, we analyze the behavior of our filter in doubly-
selective channel scenarios through numerical simulations,
comparing its performance with the extended Kalman filter
(EKF) [7], which is a commonly used approximation to the
Bayesian Filter [8].

The remainder of this paper is organized as follows: Section
II describes the system model and the state-space formulation.
The cubature Kalman filter derivation for the considered prob-
lem is presented in Section III. Section IV reports simulation
results and, finally, Section V concludes the paper.

II. SYSTEM MODEL

We consider a MIMO system with NT transmitting antennas
and NR receiving antennas interfering with each other. Due
to ISI, a signal received by an antenna i is also subject to
interference from symbols transmitted previously. The rela-
tionship between received and transmitted signals at time k
can be expressed as:

yk =
L−1

∑
l=0

Hl,kxk−l +nk (1)
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=
[
H0,k H1,k . . . HL−1,k

]
⎡
⎢⎢⎢⎣

xk

xk−l
...

xk−L+1

⎤
⎥⎥⎥⎦+nk

where L is the number of channel taps, yk =[
y1,k y2,k . . . yNR,k

]T
is the vector of signals received

by the NR antennas, xk =
[
x1,k x2,k . . . xNT ,k

]T
is the

vector of signals transmitted by the NT antennas, Hl,k is a
NR × NT matrix, ∀l = 0, . . . ,L − 1, whose element on the
i− th row and j− th column, denoted by hi, j,l,k, corresponds
to the value of the l − th channel coefficient between the
j− th transmitting antenna and the i− th receiving antenna
at time k, and nk =

[
n1,k n2,k . . . nNR,k

]T
is a vector of

white, Gaussian, circularly symmetric, zero mean, i.i.d noise
samples, with variance equal to σ2

n .
In addition, in order to represent the time variation of

the MIMO channel taps, we assume the typical wide-sense
stationary uncorrelated scattering (WSSUS) model [9]. In this
model, the channel taps have time-autocorrelation properties
that are governed by the Doppler rate and are given by

E[hi, j,l,kh
∗
i, j,l,k+Δk]≈J0(2π fDTs|Δk|) (2)

where J0 is the zero-order Bessel function of the first kind,
fDTs is the normalized Doppler rate and Ts is the baud duration.

We consider that the channel coefficients remain constant
during N ≥ 1 symbols and follow the time-autocorrelation
function (2) for time evolution between blocks of N symbols.
Thus, we can stack the N received vectors, and write the
received signals as a linear combination of the transmitted
symbols, obtaining

ỹk = H x̃k + ñk (3)

where ỹk =
[
yT

k yT
k−1 . . . yT

k−N+1

]T
is a

column vector containing the N received vectors,
x̃k =

[
xT

k xT
k−1 . . . xT

k−N−L−2

]T
is a vector

containing N + L − 1 stacked transmitted vectors,
ñk =

[
nT

k nT
k−1 . . . nT

k−N−L−2

]T
is the noise vector

and

H =

⎡
⎢⎢⎢⎣

H0,k . . . HL−1,k . . . 0
0 H0,k . . . HL−1,k 0
...

. . .
. . .

. . .
...

0 0 H0,k . . . HL−1,k

⎤
⎥⎥⎥⎦

is a block Toepletiz matrix with each block representing the
channel coefficients.

Also, defining vec(·) as the operator that stacks the columns
of a matrix on top of each other, the column vector

hk = vec(
[
H0,k H1,k . . . HL−1,k

]
)

represents the channel coefficients. As described in [10],
we can approximate the channel dynamics by a first order
autoregressive process (AR), and its time evolution can be
written as

hk = βhk−1 +wk (4)

where β = J0(2π fDTs), wk is a vector of white, Gaussian, cir-
cularly symmetric, zero mean noise samples, with covariance
matrix W = σ2

wINRNT , and σ2
w = (1−|β |2).

Finally, (3) can be rewritten as a combination of the channel
coefficients as follows:

ỹk = X hk + ñk (5)

where

X =

⎡
⎢⎢⎢⎣

xT
k xT

k−1 . . . xT
k−L+1

xT
k−1 xT

k−2 . . . xT
k−L

...
... . . .

...
xT

k−N+1 xT
k−N . . . xT

k−N−L+2

⎤
⎥⎥⎥⎦⊗ INR

and ⊗ denotes the Kronecker product. Note that (4) and (5)
suggest the formulation of a filtering problem to perform the
channel tracking as in [11]. However, in a practical commu-
nication system, some elements in X may not be known by
the receiver, preventing a linear state-space modeling.

In this paper, we treat both the channel coefficients and
the transmitted symbols as variables to be estimated. Thus,
to develop the joint estimation and detection state model, the
augmented state vector, zk, is defined as

zk =
[
x̃T

k hT
k

]T
. (6)

Observe that in order to obtain the augmented state-equation, it
is necessary to describe the dynamic behavior of the vector x̃k,
which contains the stacked transmitted symbols. To this end,
note that, as time evolves, new transmitted symbols are added
to the top of x̃k, while existing symbols are shifted towards
the bottom. Consequently, defining 0i× j as an i-by-j matrix of
zeros, this time-shifting structure can be modeled as

x̃k = Fxx̃k−1 +uk, (7)

where

Fx =

[
0NT×NT (N+L−2) 0NT×NT

INT (N+L−2) 0NT (N+L−2)×NT

]
is a shift matrix and

uk =
[
xT

k 01×NT (N+L−2)

]T

is a non-Gaussian noise with covariance matrix given by

U = E[uku
H
k ]

= σ2
u

[
INT 0NT×NT (N+L−2)

0NT (N+L−2)×NT
0NT (N+L−2)×NT (N+L−2)

]
.

With the dynamic behavior of x̃k and hk in hand, (given
by (7) and (4), respectively), it is possible to write the state
transition matrix from time k−1 to time k as

F =

[
Fx 0
0 Fh

]
(8)

where Fh = β ILNRNT .
Therefore, using (5)–(8), we define the process and obser-

vation equations for the problem of joint channel estimation
and data detection as

zk = Fzk−1 +qk (9)
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ỹk = X hk + ñk = H x̃k + ñk (10)

where

qk =
[
uT

k wT
k

]T
,

Q = E[qkq
H
k ] =

[
U 0
0 W

]
.

Note that the process equation described in (9) is linear
and allows us to estimate the predicted state (ẑk|k−1) and
the predicted error covariance (Pk|k−1) using Kalman filtering
theory [12]. The observation equation, on the other hand, is
a nonlinear function of the state variables, since it involves
a multiplication between state vector elements. Consequently,
for measurement updates, the Kalman filter can not be used and
the optimal solution can only be achieved through Bayesian
filtering.

III. PROPOSED SOLUTION

A. Nonlinear Treatment

The Bayesian filter [4] provides an optimal analytic solution
to nonlinear filtering problems. However, it requires the evalu-
ation of several intricate multidimensional integrals, preventing
its implementation in practical systems. In this sense, the chal-
lenge lays in developing a sub-optimal solution to nonlinear
filtering problems that provides accurate estimation without
great computational cost.

The extended Kalman filter (EKF) is the commonly used
algorithm to approach nonlinear filtering problems [7], em-
ploying first-order Taylor series to approximate the nonlinear
state-space equations. But, due to its first-order linearization,
the EKF presents divergence problems when the initial estima-
tive is inaccurate, or when modeling mismatches are present.
For these reasons, the EKF does not work well in the majority
of practical environments.

With the motivation of obtaining an accurate nonlinear filter
that could be applied to solve a wide range of nonlinear
filtering problems, the cubature Kalman filter (CKF), presented
in [5], was recently proposed. The CKF approximates the
Bayesian filter’s statistical description by assuming that the
conditional densities are Gaussian. Consequently, the Bayesian
filter’s solution can be reduced to the evaluation of Gaussian
integrals weighted by known nonlinear functions, which allows
the application of efficient numerical integration methods
called “Cubature Rules”[13].

Finally, according to these rules, it is possible to write in-
tegrals of the form nonlinear function × Gaussian as follows:

∫
Rn

f(x)N (x;0,I)dx≈
m

∑
i=1

ωif(ξi)

where ξi is the i− th element of the set:

ξi =

√
m
2

⎧⎨
⎩

⎛
⎝ 1

...
0

⎞
⎠ , . . . ,

⎛
⎝ 0

...
1

⎞
⎠ ,

⎛
⎝ −1

...
0

⎞
⎠ , . . . ,

⎛
⎝ 0

...
−1

⎞
⎠

⎫⎬
⎭

and
ωi =

1
m

, i = 1,2, . . . ,m = 2n.

As seen in [5], the CKF provides accurate results with reason-
able complexity for nonlinear state-space estimation problems.
Thus, we will use the CKF for the joint channel estimation
and data detection problem. However, in order to improve the
detection of the transmitted symbols and the estimation of the
channel coefficients, we also implemented two changes to the
CKF, as described in the sequel.

B. Fixed Lag Smoothing

Note that the estimated stacked vectors

ˆ̃xk =
[
x̂T

k x̂T
k−1 . . . x̂T

k−N−L−2

]T

contains the estimation of the current transmitted symbols
vector and the estimation of vectors transmitted in the N+L−2
past time instants. Thus, at time instant k, the CKF provides
an estimate of xk−N−L−2 based on all the observations up to
time k. This estimate is better than that obtained at time instant
k−N−L−2, since it is based on more information [7]. Thus,
a fixed delay in detection is introduced, and the final estimate
for vector x̂k is obtained at time k+N+L−2, where a decision
device gives the detected symbols.

C. Recursive Fading Memory Filter

As already mentioned, we used a first-order autoregressive
process to model the dynamic behavior of the MIMO channel
coefficients. However, in practical systems the channel coef-
ficients evolution does not follow this assumption, generating
modeling mismatch which may degrade the estimator perfor-
mance.

To compensate for modeling errors, we employed the recur-
sive fading memory filter theory [7] in the proposed algorithm.
These filters reduce the importance of the process equation in
the estimation process by basing the estimate of the state on
more recent measurements. Consequently, the resulting filter
becomes less sensitive to modeling mismatches.

Recalling that the filter’s estimative minimizes the error
function JN

JN =
N

∑
k=1

[
(yk−X hk)

HR−1
n (yk−X hk)+wH

k Q′−1wH
k

]
,

it is possible to increase the weight of the recent measure-
ments by inserting an aging factor α > 1, which provides an
exponential weighting of the measured signals:

ĴN =
N

∑
k=1

[
(yk−X hk)

Hα2kR−1(yk−X hk)+wH
k α2k+2Q′−1wH

k

]
.

Thus, the noise covariance matrixes of the process and mea-
surement equations can be redefined, respectively, as α2kR and
α2k+2Q, requiring only the insertion of a multiplicative factor
α2 in the algorithm error covariance matrix update:

Pk|k−1 = (αβ )2Pk|k−1 + σ2
wR.

D. Summary

The proposed algorithm is able to efficiently approach the
joint estimation and data detection problem. In addition, due
to the problem structure, it is also possible to reduce its
computational complexity. The algorithm’s steps are shown in
Table 1.
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IV. NUMERICAL RESULTS

In this section, we report some numerical results to illustrate
the proposed algorithm performance. We analyze its superior
estimation ability even in critical situations, when the channel
coefficient’s variation is extremely fast, and we also demon-
strate its behavior in face of modeling errors. In addition, for
comparison purposes, the performance of a receiver using the
extended Kalman filter (EKF) for joint estimation and detection
is also shown.

First, we set a scenario in which the channel coefficients
were generated by an autoregressive process as in (4), with 0
dB average power, and we assume that the receiver knows the
noise variance σ2

n . In this environment, a communication link
is established between 2 transmitting and 4 receiving antennas,
and 1× 106 QPSK symbols are sent in frames composed
by 25 training symbols and 125 data symbols. During the
training period, the proposed algorithm works as a Kalman
filter performing the estimation of the channel coefficients.
During the data transmission period, the unknown symbols
are jointly detected with the channel coefficients using the
algorithm in Table 1. A normalized Doppler rate of fDT = 0.01
is considered, and N = 10 symbol vectors were stacked in the
receiver.

Fig. 1 presents the MSE of the channel estimation performed
by the CKF, the EKF, and by an estimator with complete
knowledge of all symbols, representing the best possible
channel estimative (Best Estimation - BE) for a normalized
doppler rate of 0.01. It is clear that the estimation provided
by the CKF is better than the estimation provided by the
EKF, being closer to the best possible channel estimative,
which indicates the ability of the CKF to track the variation
of channel coefficients. Note that for higher SNR’s, the EKF
error performance stops improving, while the MSE values for
CKF continues to decrease. This can be explained mainly by
the fact that very accurate measurements in some nonlinear
filtering problems may result in numeric instability, which ends

TABLE I: CKF with Aging Factor

Temporal Update

ẑk|k−1 =

[
0T
NT×1

ˆ̃xT
k−1|k−1(1 : NT (N +L−2)) β ĥT

k−1|k−1

]T

A1 = Pk−1|k−1 (1 : NT (N +L−2),1 : NT (N +L−2))

B1 = αβPk−1|k−1 (1 : NT (N +L−2),NT (N +L−1) : NT (N +L−1)+LNRNT )

C1 = αβPk−1|k−1 (NT (N +L−1) : NT (N +L−1)+LNRNT ,1 : NT (N +L−2))

D1 = α2β2Pk−1|k−1(NT (N +L−1) : NT (N +L−1)+LNRNT ,NT (N +L−1) : NT (N +L−1)+LNRNT )+σ2
wI

Sk|k−1 =

⎡
⎢⎣

I 0

0

√
A1 B1
C1 D1

⎤
⎥⎦

Measurement Update

Zi,k|k−1 = (Sk|k−1ξi + ẑk|k−1)(i=1,...,m)

Yi,k|k−1 = h(Zi,k|k−1)

ŷk|k−1 = 1
m ∑m

i=1 Yi,k|k−1

Pyy,k|k−1=
1
m ∑m

i=1 Yi,k|k−1YT
i,k|k−1− ŷk|k−1 ŷT

k|k−1 +Rk

Pzy,k|k−1=
1
m ∑m

i=1 ωiZi,k|k−1YT
i,k|k−1− ẑk|k−1 ŷT

k|k−1

Wk = Pzy,k|k−1P
yy,k|k−1−1

ẑk|k = ẑk|k−1 +Wk(yk − ŷk|k−1)

Pk|k = Pk|k−1−WkPyy,k|k−1WT
k

Fixe-Lag Smoothing

x̂ f inal
k = x̂k|k+N+L−2
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Fig. 1: Mean square error of channel tracking for fDT = 0.01.
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Fig. 2: Symbol error rate for detected symbols for fDT = 0.01.

up interfering on channel estimation. Thus, besides being a
better estimator, this result shows that the cubature Kalman
filter is also less prone to numerical instabilities.

The symbol error rate for detected symbols using the
CKF, the EKF and a Kalman equalizer with perfect channel
knowledge (KF-CSI) is presented in Fig. 2. The difference
between the CKF and the KF-CSI is of approximately 7dB,
while the difference between the EKF and the KF-CSI is of
approximately 9dB. Analyzing the SER values, the CKF once
again outperforms the EKF.

As previously discussed, the employment of a first-order au-
toregressive process to model the channel coefficients dynamic
behavior results in performance degradation. To illustrate the
modeling error impact and the results achieved by the proposed
algorithm with aging factor when subjected to a “real” fading
channel, we set a scenario with 2 transmitting and 4 receiving
antennas sending the QPSK symbols in a pilot based scheme.
In such scheme, one known training symbol is transmitted,
followed by 5 data symbols. The channel coefficients were
generated by a 2-path Rayleigh channel with 0 dB average
power and a normalized Doppler rate of fDT = 0.005, accord-
ing to Jake’s model [9].

Fig. 3 depicts a comparison between the MSE of the channel
estimation of standard CKF and a EKF-based receivers, and a
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Fig. 3: Mean square error of channel tracking for fDT = 0.005.
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Fig. 4: Symbol error rate for detected symbols using aging
factor.

CKF-based receiver with an aging factor of α = 1.1. Note
that the proposed algorithm with aging factor has the best
estimation performance when compared to the receivers that
do not take the modeling errors under consideration. Also, note
that the EKF-based receiver presents a much poorer estimation
when compared to the CKF-based algorithms, showing that
modeling mismatches have a deeper impact on the extend
Kalman filter estimation ability, mainly due to its first-order
linearization.

The symbol error rates for receivers using the CKF and the
EKF with aging factor are shown in Fig. 4. The SER resulting
from the EKF is almost constant for the whole SNR range
considered, indicating that it is not able to overcome modeling
errors. The filter based on the CKF, on the other hand, presents
low error rates, and the SER decreases with the increase of
the SNR. This result shows that the CKF inspired algorithm is
able to track a “real” fast frequency-selective fading channel,
in spite of the fact that it models the channel dynamics as a
first-order AR process.

V. CONCLUSIONS

In this paper, the cubature Kalman filter (CKF), was used
to perform joint channel estimation and data detection in fast
frequency-selective MIMO environments. In order to jointly

estimate the channel and detect the symbols, the problem
was modeled in the state-space form by defining an extended
state-equation containing both the channel coefficients and the
transmitted symbols. This formulation leads to a nonlinear
observation equation, which prevents the use of the well-
known Kalman Filter.

Once the estimation problem was defined, the cubature
Kalman filter (CKF) was presented, along with two others
techniques used to improve the receiver’s estimation and
detection ability: smoothing and fading memory. As a result,
a semi-blind algorithm based on the cubature Kalman filter is
proposed that efficiently solve the joint channel estimation and
data detection problem.

Simulations indicate the ability of the CKF-based filter to
efficiently track fast channel variations and correctly detect
symbols with a low error rate. One advantage of the proposed
receiver is that the computational complexity of the CKF
grows only linearly with the dimension of the state and is
less susceptible to numerical issues than other methods. The
proposed algorithm outperforms the extended Kalman filter
(EKF), which is commonly used for nonlinear filtering prob-
lems, presenting a smaller MSE for channel estimation and a
smaller SER for symbol detection than the EKF. Furthermore,
by basing its estimates in more recent measurements, the
proposed CKF-based algorithm is capable of dealing with
modeling errors, being able to track “real” fast frequency-
selective fading channels.
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