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Abstract

We derive and analyze two modified Kalman channel estimators (KCE) for time-varying, flat, spatially

correlated MIMO channels in systems employing orthogonal space-time block codes: the steady-state

KCE, which is less complex than the KCE, and the fading memory KCE, which is more robust to model

mismatch.
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I. INTRODUCTION

Orthogonal space-time block codes (OSTBC) [1]–[3] achieve full spatial diversity in multiple-input,

multiple-output (MIMO) wireless systems with low complexity, since their maximum likelihood (ML)

receiver consists of a linear processing followed by a symbol-by-symbol decoder. However, the receiver
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for OSTBCs requires channel knowledge, so that channel estimation techniques are essential. When the

channel is static, estimators such as those presented in [4] and [5] can be successfully used. However, in

wireless communications the channel is often time-varying. In this case, the estimation algorithm must

be able to track the channel variations.

Kalman filters [6], [7] are widely used for channel tracking, especially due to their ability to deal with

nonstationary environments. In [8] for instance, the authors derive a Kalman channel estimator (KCE) that

uses the outputs of a minimum mean square error (MMSE) decision-feedback equalizer (DFE) to track

Ricean MIMO frequency-selective channels. Channel estimation using KCEs for MIMO-OFDM systems

is studied in [9]. Kalman filters can also be used to track the channel in MIMO systems employing

OSTBCs. In [10], a KCE is used to estimate fast flat fading MIMO channels in systems with two

transmit antennas employing Alamouti code. This KCE is generalized in [11] for any type of OSTBCs

and spatially uncorrelated channels. A KCE for correlated channels was derived in [12].

As with most KCEs, the KCE in [12] is a time-varying filter whose coefficient matrices need to be

computed anew for each time instant. This computation, which involve a matrix inversion, increases

the complexity of the filter. To reduce the complexity, a steady-state Kalman channel estimator (SS-

KCE) [6] is also derived in [12]. The SS-KCE is a time-invariant filter, whose coefficients are given

by the asymptotic value of the filter matrices. In spite of the significant complexity reduction, it is

shown in [12] that the SS-KCE suffers negligible performance degradation compared to the regular KCE,

especially when channel variations are fast.

However, the SS-KCE of [12] depends on the solution of a Riccati equation. The first contribution

of the present paper is to derive an explicit expression for the SS-KCE, and to prove that, under mild

conditions, the SS-KCE is stable. We also prove that, at worst, the SS-KCE is marginally stable, but it

is never unstable.

Besides complexity, another drawback of the KCEs mentioned so far is that they rely on an autore-

gressive model of the channel dynamics [8], [11]. Unfortunately, this model is only an approximation

of the actual dynamics behind the channel variations. To improve the KCE robustness to channel model

mismatch, in this paper we derive a fading-memory Kalman channel estimator (FM-KCE) [6] for esti-

mating MIMO channels with OSTBC. This filter attributes a larger value to the variance of the process

noise in the state equation, so that the filter must rely more on the measurement than on the prediction

step of the KCE. As a result, the filter is more robust to model mismatch. We also derive a steady-state

version of the FM-KCE, and present simulation results that attest the improved performance of the fading

memory estimator when compared to the KCE.
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The remainder of the paper is organized as follows: in section II we present the system model, briefly

describing orthogonal space-time block codes and an autoregressive model for spatially correlated and

time-varying MIMO channels. In section III we derive the steady-state Kalman filter and analyze the

conditions for its existence. In section IV, we derive the fading memory Kalman channel estimator.

Simulation results are shown in section V. Finally, section VI concludes the paper.

II. SYSTEM MODEL

We consider a MIMO system with NT transmit antennas sending data blocks of length T to NR receive

antennas, through a frequency flat channel. The received signal for data block k, Yk, can be expressed

as [3]

Yk = HkXk +Nk, (1)

where Xk is an NT × T space-time codeword, the elements of the NR × T matrix Nk are independent,

zero mean, circularly symmetric, white Gaussian noise with variance σ2
n, and the channel is represented

by the NR ×NT matrix Hk. We assume the use of an OSTBC [2]–[4], so the elements of Xk are linear

combinations of the transmitted information symbols in the data block xk and their complex conjugates.

Also, the codewords satisfy XkX
H
k = ∥xk∥2INT

, where INT
is the identity matrix of order NT , ∥ · ∥

represents the Euclidean norm and (·)H denotes the conjugate transpose of a matrix.

The channel matrix Hk is assumed to be fixed during the transmission of a data block, and is assumed

to change between blocks. We use the wide-sense stationary uncorrelated scattering (WSSUS) model [13],

where the channel coefficients are modeled as zero-mean, complex Gaussian random variables with time

autocorrelation function

E
[
hk,i,jh

∗
t,i,j

]
≈ J0(2πfDTs |k − t|), (2)

where hk,i,j , i = 1, . . . , NR, j = 1, . . . , NT is the (i, j) element of the channel matrix Hk, J0 is the

zero-order Bessel function of the first kind, fDTs is the normalized Doppler rate (assumed the same for

all transmit-receive antenna pairs) and Ts is the time necessary to transmit the space-time codeword Xk.

Note that we assume that the channel coefficients have unit variance. Spatial correlation is captured by

the matrix Rh = E
[
hk h

H
k

]
, where hk = vec(Hk) is the vector obtained by stacking the columns of Hk

on top of each other. As in [9], [12], we approximate the autocorrelation function (2) by the first order

autoregressive (AR) process given by

hk = βhk−1 +Gwk, (3)

where β = J0(2πfDTs), wk is a vector of length NRNT containing samples of circularly symmetric,

zero-mean, white Gaussian excitation noise with covariance matrix Q = σ2
wINRNT

, and σ2
w = (1− β2).
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The matrix G is such that Rh = GGH. Note that β = 1 when fD = 0, i.e., when there is no mobility. In

all other cases, we have |β| < 1. Although higher-order AR models provide better approximation to (2)

and the extension of (3) to that higher-order models is straightforward [8], we use the AR(1) model due

to its simplicity. In Section IV, we derive a channel estimator to cope with this modeling error.

III. STEADY-STATE KALMAN CHANNEL ESTIMATOR

Equation (3) can be seen as a process equation in a state-space description of the channel dynamics [6],

[7]. To complete the state-space model required by the Kalman filter, we need to derive the measurement

equation. The system output, in our case, is the channel output matrix Yk in (1). Thus, as in [12], the

measurement equation is formed by yk = vec(Yk), resulting in

yk = X khk + nk, (4)

where X k = XT
k ⊗ INR

and Rn = σ2
nINRNT

is the covariance matrix of the measurement noise nk, and

⊗ represents the Kronecker product [14].

The state equation (3) and the observation equation (4) are linear functions of the state vector hk, and

the noises wk and nk are white, Gaussian and mutually statistically independent. Thus, the Kalman filter

provides the optimal recursive estimates, in the MMSE sense, for the channel coefficients [6], [7]. Using

the orthogonality of the transformed space-time codeword X k [12], the Kalman channel estimator (KCE)

for correlated MIMO-OSTBC systems can be written as [12]

Pk|k−1 = β2Pk−1|k−1 + σ2
wRh (5a)

Ak = Pk|k−1

(
σ2
n

∥xk∥2
INRNT

+Pk|k−1

)−1

(5b)

Pk|k = (INRNT
−Ak)Pk|k−1 (5c)

ĥk|k = β (INRNT
−Ak) ĥk−1|k−1 +Ak

XH
k yk

∥xk∥2
(5d)

In these equations, Pi|j an ĥi|j are, respectively, the prediction error covariance matrix and estimated

channel vector at a data block i given the observation up to block j, and Ak is simply an auxiliary

matrix.

The matrices in (5a)–(5c), and in particular the matrix inversion in (5b), have to be computed at every

iteration. However, for constant modulus constellations, ns , ∥xk∥2 is constant, so (5a)–(5c) represent a

time-invariant system that quickly converges to a constant value. To reduce complexity, the steady-state

Kalman filter [6] computes the asymptotic values of these equations, and uses these values to update the

estimated channel in (5d).
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Now, as shown in [12], the steady-state value of Pk|k−1, denoted by P∞, is a solution of the following

discrete algebraic Riccati equation (DARE) [6], [7]:

P∞ = β2P∞ − β2P∞

(
P∞ +

σ2
n

ns
INRNT

)−1

P∞ + σ2
wRh. (6)

If (6) can be solved, we can use P∞ in (5b) to calculate the steady-state value of A, denoted by A∞.

In this case, the proposed steady-state Kalman channel estimator (SS-KCE) is given simply by

ĥk|k = β (INRNT
−A∞) ĥk−1|k−1 +A∞

XH
k yk

∥xk∥2
. (7)

In the next section, we present the solution to (6), and discuss the stability of the resulting filter (7).

We note that the KCE and the SS-KCE can operate in both training and decision-directed (DD) modes.

First, when pilot symbols are available, the matrix X k is known. Once the transmission of pilot symbols

is finished, the algorithms enter in DD mode, where the matrix X k is formed by the decisions provided

by the ML space-time decoder. Possible decoding errors in these decisions could be modeled as an

extra term in the measurement noise, which could then be non-Gaussin. These decoding errors could be

minimized by the use of a turbo-like receiver, where the decisions used by the channel estimator would

be iteratively improved by a soft-decision decoder of an outer code. However, this solution demands

more computational power. Hence, in this paper we use the usual simplifying assumption, as in [8], that

the decisions provided by the ML space-time decoder are correct. Despite this simplification, the channel

estimators proposed in this paper present very good performances, as can be seen in Section V.

A. Derivation and Analysis of the SS-KCE

We now begin extending [12], showing the only possible solution of the DARE in (6) that results in

a valid covariance matrix P∞. Then, we show that this solution leads to a stable filter in most cases of

interest. To begin the derivation, let Rh = QHΛQ be the eigendecomposition of Rh. Since Q is unitary,

it is easy to verify that P∞ = QHΣQ is a solution of the DARE (6), as long as the diagonal matriz Σ

satisfies

Σ = β2Σ− β2Σ

(
Σ+

σ2
n

ns
INRNT

)−1

Σ+ σ2
wΛ. (8)

Now let σi and λi be the i-th diagonal element of Σ and Λ, respectively. Then, since all the matrices in

(8) are diagonal, σi must satisfy

σ2
i + bσi + c = 0, (9)

where b = σ2
n(1 − β2)/ns − σ2

wλi and c = −σ2
nσ

2
wλi/ns. In other words, the eigenvalues of P∞ are

given by

σi =
−b±

√
b2 − 4c

2
. (10)
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We now show that only one of the solutions in (10) yield a valid autocorrelation matrix P∞, with

eigenvalues σi that are real and non-negative. We begin by noting that Rh is a correlation matrix, so

λi ≥ 0. We then identify three possibilities, all leading to a valid P∞:

• When there is no mobility, β = 1 and σ2
w = 0, so that b = c = 0. In this case, σi = 0.

• When λi = 0 and there is mobility, i.e., β < 1, we have that b > 0 and c = 0. In this case, σi may

be equal to −b or 0. The second solution is the only valid one.

• When λi > 0 and there is mobility, i.e., β < 1, we have that c < 0. Furthermore, since c < 0, we

have that b2 < b2 − 4c, so the solution given by σi = (−b+
√
b2 − 4c)/2 is non-negative.

We also need to prove that the SS-KCE in (7) is stable. To that end, note from (7) that stability

holds as long as the eigenvalues of β(I−A∞) have magnitude less than one. Now, using the fact that

P∞ = QHΣQ, it is easy to verify that the eigenvalues of β(I−A∞), ρi, are given by

ρi = β
σ2
n/ns

σ2
n/ns + σi

. (11)

Note that σi ≥ 0, so that 0 < ρi ≤ β. Also, note that ρi = 1 if and only if σi = 0 and β = 1, which

happens if and only if there is no mobility. In these cases, the SS-KCE is marginally stable. In all other

cases, the filter is stable.

Finally, we note that the SS-KCE is more sensitive to the initial conditions than the KCE. In fact, in the

KCE, the initial value P0|0 controls the influence of the initial value of the channel estimate. Large values

of P0|0 indicate low reliability of ĥ0|0, which in turn decreases the impact of ĥ0|0 in the computation

of ĥ1|1. In the limit, when P0|0 grows very large, A1 → I, so that ĥ1|1 tends to XH
1 y1/∥x1∥2 1.

However, Pk|k is fixed in the SS-KCE, so the impact of the initial value of the channel estimate cannot

be controlled. Thus, the initialization should be chosen carefully. To that end, we propose using the

one-shot maximum-likelihood estimate ĥ1|1 = XH
1 y1/∥x1∥2 in the first iteration. Equation (7) is used to

update ĥk|k only when k ≥ 2.

IV. FADING MEMORY KALMAN CHANNEL ESTIMATOR

As mentioned in Section II, the first order AR model used in (3) is only an approximate description

of the time evolution of channel coefficients. This modeling error can degrade the performance of the

proposed channel estimators. One possible solution to mitigate this performance degradation in the KCE is

to give more emphasis to the most recent received data, thus increasing the importance of the observations

and decreasing the importance of the process equation [6], [15]. This can be accomplished with an

1Note that this is the maximum likelihood estimate of the channel given only the observation y1.
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exponential data weighting, controlled by a scalar α ≥ 1, which increases the importance of the most

recent observations by giving them a higher weight than past data [6], [15].

Hence, following [6], [15], it is possible to show that this exponential data weighting for OSTBC

systems leads to the fading-memory Kalman channel estimator (FM-KCE), given by

Pk|k−1 = (αβ)2Pk−1|k−1 + σ2
wRh (12a)

Ak = Pk|k−1

(
σ2
n

∥xk∥2
INRNT

+Pk|k−1

)−1

(12b)

ĥk|k = β (INRNT
−Ak) ĥk−1|k−1 +Ak

XH
k yk

∥sk∥2
(12c)

Pk|k = (INRNT
−Ak)Pk|k−1 (12d)

The only difference between the KCE and the FM-KCE is the existence of the scalar α2 in the update

equation of prediction error covariance matrix of the FM-KCE in (12a). This increases the variance of

the prediction error, to which the filter responds by giving less importance to the system equation. The

same could also be accomplished by using a system equation with a noise term of increased variance,

which could be interpreted as a result of adding a fictitious process noise [6], [15]. It is worth noting that

when α = 1, the FM-KCE reduces to the KCE. On the other hand, when α → ∞, the channel estimates

provided by the FM-KCE are solely based on the received signals, and the system model is not taken

into account.

The FM-KCE also has a steady-state version. In fact, noting the similarities between the FM-KCE (12a)–

(12d) and the KCE in (5a)–(5d), and following the same steps described in Section III for the derivation

of (6), it can be shown that the Riccati equation for the FM-KCE is given by

P∞ = (αβ)2P∞ − (αβ)2P∞

(
P∞ +

σ2
n

ns
INRNT

)−1

P∞ + σ2
wRh. (13)

The solution of the DARE in (13) is also of the form P∞ = QHΣQ. As was done in section III-A,

it can be shown that the elements of the diagonal matrix Σ are given by σi = (−b +
√
b2 − 4c)/2,

where b = σ2
n(1 − α2β2)/ns − σ2

wλi and c = −σ2
nσ

2
wλi/ns. Furthermore, when c ̸= 0, i.e., when there

is mobility and Rh is full rank, we can follow the steps in section III-A to show that the filter has a

unique solution that leads to a stable filter. The steps in section III-A can also be followed when c = 0

and αβ ≤ 1 to show that the filter has a unique solution that leads to a marginally stable filter.

However, when c = 0 and αβ ≤ 1, b becomes a negative number, so that −b leads to a valid

autocorrelation matrix that satisfies (13). In this case, it can be shown that the eigenvalues of Pk|k−1

remain at zero when initialized at this value, and they converge to −b when initialized at a non-zero

value. In other words, the value of P∞ depends on the initialization. Since this initialization is generally
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of full rank, normally the steady-state value will be given by −b. Also, note that, as −b > 0, the resulting

filter is stable, even if, in this case, there is no mobility or Rh is not full rank.

V. SIMULATION RESULTS

In this section, we present simulation results that illustrate the performance of the proposed channel

estimation algorithms. The simulation results presented in the sequel correspond to averages of 10 channel

realizations, in each of which we simulate the transmission of 1× 106 orthogonal space-time codewords.

Unless stated otherwise, we insert 25 OSTBC training codewords between every 225 OSTBC data

codewords. During the detection of the data codewords, the channel estimators operate in the decision-

directed mode, using the detected data as training information. We assume that the receiver has perfect

knowledge of the variances of process and measurement noises, the spatial correlation matrix and the

normalized Doppler rate fDTs
2.

The spatial correlation is modeled as [3] Hk = R
1/2
R Hind

k R
T/2
T , where RR models the correlation

between receive antennas, RT models the correlation between transmit antennas, (·)1/2 stands for the

Hermitian square root of a matrix [14] and Hind
k is a MIMO channel with spatially independent and

unit variance Gaussian elements with time autocorrelation function given by WSSUS model in (2). As

shown in [12], this results in a channel that also satisfies (3), with spatial autocorrelation matrix given by

Rh = GGH, where G = R
1/2
T ⊗R

1/2
R . We further assume that the spatial correlation coefficient between

any two adjacent receive (transmit) antennas is given by pr (pt), so that each (i, j) element of the spatial

correlation matrix RR (RT ) can be expressed as p
|i−j|
r , i, j = 1, . . . , NR (p|i−j|

t , i, j = 1, . . . , NT ).

To illustrate the performance of the Kalman channel estimator and its steady-state version, we simulate

a system sending QPSK symbols from NT = 4 transmit to NR = 4 receive antennas. For comparison

purposes, we also simulate a channel estimator implemented by the well known RLS adaptive filter [17],

with a forgetting factor of 0.98. This value was determined by trial and error to yield the best performance

of the RLS. We employ the 1/2 -rate OSTBC of [2] and assume pt = 0.8 and pr = 0.4. The mean squared

error (MSE) for the RLS and the SS-KCE is shown in Fig. 1. The curves for the KCE are undistinguishable

from those of the SS-KCE, so they are not shown in the figure. We observe that the estimates produced by

the RLS algorithm are affected by the rate of channel variation. On the other hand, for this scenario, the

proposed SS-KCE has the same performance for both values of fDTs considered and the MSE decreases

with the SNR. The similar performances of SS-KCE for fDTs = 0.0015 and fDTs = 0.0045 are also

reflected in the symbol error rates (SER) at the output of the ML decoders, as shown in Fig. 2. In terms

2These parameters can be estimated using, for example, the methods proposed in [16].
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0 5 10 15 20 25 3010-310-210-1100101

SNR (dB)
MSE

 

 

RLS, fDTs = 0.0045RLS, fDTs = 0.0015SS-KCE, fDTs = 0.0045SS-KCE, fDTs = 0.0015
Fig. 1. Estimation MSE for different values of fDTs. The performances of the KCE and the SS-KCE cannot be distinguished.

0 5 10 15 2010-510-410-310-210-1100

SNR (dB)
SER

 

 RLS, fDTs = 0.0045RLS, fDTs = 0.0015SS-KCE, fDTs = 0.0045SS-KCE, fDTs = 0.0015Perfect CSI, fDTs = 0.0045Perfect CSI, fDTs = 0.0015

Fig. 2. Symbol error rate for different values of fDTs. The performances of the KCE and the SS-KCE cannot be distinguished.

of SER, the KCE also has the exact same performance as the SS-KCE. For an SER of 10−3, the decoders

using the channels estimates provided by the SS-KCE are about 1 dB from the curves of the ML decoders

with perfect channel state information (CSI). For an SER of 10−3 and fDTs = 0.0015 the decoder fed

with RLS channels estimates is approximately 4 dB from the optimal decoder, while for fDTs = 0.0045

the RLS-based decoder presents an SER no smaller than 10−1 in the simulated SNR range.

We can explain the performance equivalence of KCE and SS-KCE by the fast convergence of the matrix

Pk|k−1 to its steady-state value. This means that the SS-KCE uses the optimal value of Ak after just a
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0 100 200 300 400 50000.20.40.60.81
1.21.4 x 10-3

Number of OSTBC codewords
Entries of  P
k|k-1

Fig. 3. Evolution of the entries of Pk|k−1.

few blocks. Consequently, after these few blocks, the estimates provided by the SS-KCE are the same as

those generated by the KCE. To exemplify the fast convergence of Pk|k−1, Fig. 3 shows the evolution

of the values of the elements of Pk|k−1 for an 8-PSK, Alamouti coded system with NR = NT = 2,

fDTs = 0.0015, pr = 0.4, pt = 0.8, SNR = 15 dB and with the initial condition P0|0 = INRNT
. The

dashed lines show the solution of the Riccati equation. It is clear from this figure that the elements of

the matrix Pk|k−1 reach their steady-state values before the transmission of 200 blocks. As the simulated

system inserts 25 training blocks between 225 data blocks, we see that Pk|k−1 converges to the solution

of the Riccati equation even before the second training period.

In Section IV, we claimed that much of the estimation errors in the KCE is due to the modeling

error introduced by the use of the first-order AR channel model. To cope with this error, we proposed

the fading-memory estimator and its steady-state version. To illustrate the performance improvement of

FM-KCE in comparison to the SS-KCE, we simulate a MIMO system with 2 transmit antennas sending

Alamouti-coded QPSK symbols to 2 receive antennas. The normalized Doppler rate is set to 0.0015,

the receiver correlation coefficient pr is set to zero while the transmitter correlation coefficient assumes

the value pt = 0.4. To take into account a possible mismatch in the spatial channel model, we add a

white noise with variance 0.1 to all elements of matrix RT , while maintaining it Hermitian. We vary

the number of training codewords from 4 to 32 while maintaining the total number of blocks (training +

data) fixed to 160 codewords. Also, we assume the weight of the FM-KCE α = 1.1.

In Fig. 4 we present the estimation MSE for SS-KCE and for the steady-state version of FM-KCE,

computed from the solution of the Riccati equation (13), with 4, 8, 12, 16, 20, 24, 28 and 32 training

June 28, 2011 DRAFT
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-3
10
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10

-1
10

0
10

1

SNR (dB)

M
S
E

 

 
SS-KCE

FM-KCE

Fig. 4. Estimation MSE for SS-KCE and the steady-state version of FM-KCE.

codewords. The arrows in this figure indicate the number of training codewords in ascending order.

From Fig. 4, the superiority of FM-KCE over SS-KCE is evident. Differently from SS-KCE, whose

performance improves with the increase in the number of training codewords, the FM-KCE presents

similar performances for the whole range of training codewords considered. For instance, for an MSE of

10−2 the FM-KCE performs 10 dB better than the SS-KCE with 4 training codewords and about 3.5 dB

better than the SS-KCE with 32 training codewords.

The superior performance of the FM-KCE can also be observed in Fig. 5, which shows the SER at the

output of ML decoders fed with CSI provided by SS-KCE and FM-KCE, as well as with perfect channel

knowledge, for different training sequence lengths. For an SER of 10−3, the receiver with the FM-KCE

is about 1.3 dB from the decoder with perfect CSI, while the receiver using channel estimates provided

by the SS-KCE presents performance losses of 2.2 and 8 dB from the decoder with perfect CSI for 32

and 4 training codewords, respectively. For an SER of 10−4, the receiver with the FM-KCE performs

0.25 and 5 dB better than the receiver with SS-KCE for 32 and 4 training codewords, respectively, and

presents a loss of 0.8 dB from the ML space-time decoder with perfect CSI. Thus, from Figs. 4 and 5,

we see that the FM-KCE allows the use of a small number of training codewords without compromising

the performance of the receiver.

VI. CONCLUSION

In this paper, we proposed channel estimation algorithms for systems employing orthogonal space-

time block codes. The proposed algorithms are based on generalizations of the traditional Kalman filter.
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Fig. 5. Symbol error rate for SS-KCE and the steady-state version of FM-KCE.

The first is the steady-state filter, which is applicable to systems employing constant modulus signal

constellations. In this case, several matrices in the Kalman filter quickly converge to steady-state values.

These can be used instead of their time-varying counterparts, thus reducing the complexity of the filter.

We derived explicit expressions for these steady-state values, showing that the resulting filter is stable in

most scenarios of interest. We also proposed an efficient initialization of the filter. In our simulations,

the performance of the Kalman estimator and its steady-state version cannot be distinguished.

The second generalization is the fading memory filter, which is more robust to errors in the channel

model. This is particularly important in the estimation of wireless channels, since the first order autore-

gressive model for the channel dynamics, used in the derivation of the Kalman filters, is only a rough

approximation to the channel dynamics. To achieve this robustness, the fading memory filter decreases

the importance of the process equation in the estimation process. Simulation results show that the fading

memory estimator outperforms the traditional Kalman filter by as much as 5 dB for a SER of 10−3.

REFERENCES

[1] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless Communications,” IEEE J. Sel. Areas Commun.,

vol. 16, no. 10, pp. 1451–1458, Oct. 1998.

[2] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-Time Block Codes from Orthogonal Designs,” IEEE Trans. Inf.

Theory, vol. 45, no. 5, pp. 1456–1467, Jul. 1999.

[3] E. Larsson and P. Stoica, Space-Time Block Coding for Wireless Communications. Cambridge University Press, 2003.

[4] B. Vucetic and J. Yuan, Space-Time Coding. John Wiley and Sons, 2003.

[5] E. Larsson, P. Stoica, and J. Li, “Orthogonal Space-Time Block Codes: Maximum Likelihood Detection for Unknown

Channels and Unstructured Interferences,” IEEE Trans. Signal Process., vol. 51, no. 2, pp. 362–372, Feb. 2003.

June 28, 2011 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 13

[6] D. Simon, Optimal State Estimation - Kalman, H∞, and Nonlinear Approaches. John Wiley and Sons, 2006.

[7] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Prentice Hall, 2000.

[8] C. Komninakis, C. Fragouli, A. H. Sayed, and R. D. Wesel, “Multi-Input Multi-Output Fading Channel Tracking and

Equalization Using Kalman Estimation,” IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1065–1076, May 2002.

[9] M. Enescu, T. Roman, and V. Koivunen, “State-Space Approach to Spatially Correlated MIMO OFDM Channel Estimation,”

Signal Processing, vol. 87, no. 1, pp. 2272–2279, 2007.

[10] Z. Liu, X. Ma, and G. B. Giannakis, “Space-Time Coding and Kalman Filtering for Time-Selective Fading Channels,”

IEEE Trans. Commun., vol. 50, no. 2, pp. 183–186, Feb. 2002.

[11] B. Balakumar, S. Shahbazpanahi, and T. Kirubarajan, “Joint MIMO Channel Tracking and Symbol Decoding Using Kalman

Filtering,” IEEE Trans. Signal Process., vol. 55, no. 12, pp. 5873–5879, Dec. 2007.

[12] M. B. Loiola, R. R. Lopes, and J. M. T. Romano, “Kalman Filter-Based Channel Tracking in MIMO-OSTBC Systems,”

in Global Telecommun. Conf., GLOBECOM 2009, Honolulu, 2009.

[13] W. C. Jakes, Microwave Mobile Communications. New York: John Wiley and Sons, 1974.

[14] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed. John Hopkins University Press, 1996.

[15] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Prentice-Hall, 1979.

[16] A. Jamoos, E. Grivel, W. Bobillet, and R. Guidorzi, “Errors-In-Variables-Based Approach for the Identification of AR

Time-Varying Fading Channels,” IEEE Signal Process. Lett., vol. 14, no. 11, pp. 793–796, Nov. 2007.

[17] S. Haykin, Adaptive Filter Theory, 4th ed. Prentice-Hall, 2002.

June 28, 2011 DRAFT


